Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat hormone acts on brain circuit to curb obesity, diabetes

19.01.2005



New research published in the premier issue of Cell Metabolism finds that a single brain region is sufficient for normal control of blood sugar and activity level by the fat hormone leptin. The same region also exerts significant, though more modest, control over leptin’s effects on body weight. The findings in mice provide insight into potential mechanisms underlying type II diabetes and suggest new avenues for treatment, according to the researchers.

Secreted by fat cells, leptin signals the status of the body’s energy content to the brain and is required for normal body weight and glucose balance. Mice lacking leptin develop obesity, diabetes, and inactivity, among other symptoms.

The new results suggest that leptin signaling acts directly on the brain region known as the hypothalamic arcuate nucleus (ARH) to control insulin and glucose levels in the bloodstream, report Joel Elmquist and Bradford Lowell, both of Beth Israel Deaconess Medical Center and Harvard Medical School, and their colleagues. ARH neurons also mediate the majority, if not all, of the hormone’s action on locomotor activity, they found.



Leptin receptors in the ARH accounted for approximately 22 percent of the hormone’s effects on body weight, the group reports, suggesting that other brain regions are also important to this hormonal function.

"As the incidence of obesity and diabetes continues to rise in industrialized countries, a clear understanding of the cellular and neuroanatomic pathways that control energy and glucose balance is critical to the discovery of new methods to prevent or treat these conditions," Elmquist said. "The current findings definitively demonstrate that the hypothalamic arcuate nucleus is required for normal body weight homeostasis and is sufficient to control leptin’s anti-diabetic actions."

Using a novel technique, the researchers unilaterally re-activated leptin receptors in the ARH of mice in which they had otherwise blocked all leptin receptor activity. The ARH had been proposed as an important site of leptin action.

At 12 weeks of age, mice with restored receptor activity had an approximately 22 percent decline in total body weight due to a reduction in fat mass, compared to those lacking active leptin receptors, they found.

Restoration of leptin signaling also remarkably improved glucose homeostasis in the mice. Eight weeks after the treatment, blood glucose levels in the mice were indistinguishable from normal mice of the same age. The restored mice also exhibited significant increases in locomotor activity compared to leptin-deficient mice. Their activity levels were equivalent to that typical of normal mice.

While earlier studies had shown that leptin acts primarily through its effects on the central nervous system, the findings provide important new details about which brain areas mediate each of the fat hormone’s many actions, the researchers said. The results further suggest that deficits in certain regions of the central nervous system might underlie type II diabetes, Elmquist added.

Roberto Coppari, Masumi Ichinose, Charlotte E. Lee, Abigail E. Pullen, Christopher D. Kenny, Robert A. McGovern, Vinsee Tang, Shun M. Liu, Thomas Ludwig, Streamson C. Chua Jr., Bradford B. Lowell, and Joel K. Elmquist: "The hypothalamic arcuate nucleus: A key site for mediating leptin’s effects on glucose homeostasis and locomotor activity"

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org
http://www.cell.com

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>