Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer vaccines: A two-pronged attack?

18.01.2005


The latest findings in cancer vaccine development suggest that cancer vaccines may have two modes of action; specific immunization and non-specific activation of immune cells paralyzed by the tumor.



The human immune system fights cancer partly through the production of many populations of specialized immune cells called cytolytic T cells (CTL). Each CTL population recognizes a different, specific marker, an ’antigen’, on the cancer cell surface. Cancer vaccines are designed to tip the balance in favor of the immune system by stimulating the production of CTLs against the particular antigen in the vaccine. However, in back-to-back articles published today in the Journal of Experimental Medicine, investigators at the Brussels Branch of the Ludwig Institute for Cancer Research (LICR) and Brussel’s Louvain University have shown that a cancer vaccine not only specifically stimulates the production of CTLs against the vaccine antigen, it also non-specifically activates spontaneously produced CTL populations against multiple cancer antigens.

According to Dr. Thierry Boon, the Director of the LICR Brussels Branch, this observation opens a new way of thinking about how cancer vaccines might work. "We have always thought that cancer vaccines could only be effective if massive numbers of vaccine-specific CTLs were produced. But it seems that, in about 10% of patients with metastatic melanoma, the vaccine might actually be reawakening different CTL populations that have been effectively deactivated by the tumor."


The research team also found that metastases were enriched with inactive CTLs, and they are now assessing exactly how vaccination can ’spark’ the reactivation of CTLs. "We believe that these CTLs in the metastatic lesions could potentially eliminate the bulk of the tumor," says Dr. Boon. "Now we have to elucidate why this non-specific process works in some patients and not in others, and then to learn how to harness this effect to help even more people with cancer."

Sarah L. White | EurekAlert!
Further information:
http://www.licr.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>