Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test shows promise as monitor for antiangiogenic cancer therapy

18.01.2005


Scientists have uncovered critical information that may lead to an urgently needed method for effective monitoring of antiangiogenic cancer therapies. The research, published in the January issue of Cancer Cell, is likely to facilitate development of new antiangiogenic drugs or treatment strategies and allow for accurate determination of the optimal drug doses to use for such therapies.



Antiangiogenic cancer therapy targets the formation of new blood vessels used to support tumor growth. Although many of these agents are currently being tested in clinical trials, no reliable way to monitor the effects of many, if not most, of these therapeutic agents on the inhibition of the complicated process of angiogenesis exists. Dr. Robert S. Kerbel from Women’s College Health Sciences Centre in Toronto and colleagues, including Dr. Francesco Bertolini of the European Institute of Oncology in Milan and Dr. Robert D’Amato of Harvard University, examined whether circulating levels of a class of specific blood cells that contribute to the formation of tumor vessels provide any useful information about the effectiveness of angiogenesis inhibitors.

The researchers found that levels of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs) are quite varied depending on the genetic background of an animal. However, within a particular strain of mice, levels of these cells are influenced by known regulators of blood vessel formation and correlate remarkably with the ability to induce tumor blood vessel growth and the response to antiangiogenic therapy. Importantly, treatment with a drug that interfered with the major signaling receptor for vascular endothelial growth factor (VEGF), a key regulator of blood vessel development, caused a dose-dependent reduction in CEPs. The reduction in CEPs closely reflected the previously established antitumor activity of this VEGF inhibitor, and the optimal decline in CECs and CEPs was reached at the optimal antitumor dose.


The authors conclude that measuring peripheral blood cells can be used as a reliable surrogate for therapeutic inhibition of angiogenesis. "Our results highlight the possibility of a peripheral blood-based cellular assay to both measure and monitor angiogenesis, as well as to monitor antiangiogenic drug activity, the latter of which can be exploited to help establish the optimal biologic dose of such drugs," offers Dr. Kerbel.

Yuval Shaked, Francesco Bertolini, Shan Man, Michael S. Rogers, Dave Cervi, Thomas Foutz, Kimberley Rawn, Daniel Voskas, Daniel J. Dumont, Yaacov Ben-David, Jack Lawler, Jack Henkin, Jim Huber, Daniel J. Hicklin, Robert J. D’Amato, and Robert S. Kerbel: "Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate marker analysis of antiangiogenesis"

The context and implications of this work are discussed in a Preview by Schneider et al.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>