Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test shows promise as monitor for antiangiogenic cancer therapy

18.01.2005


Scientists have uncovered critical information that may lead to an urgently needed method for effective monitoring of antiangiogenic cancer therapies. The research, published in the January issue of Cancer Cell, is likely to facilitate development of new antiangiogenic drugs or treatment strategies and allow for accurate determination of the optimal drug doses to use for such therapies.



Antiangiogenic cancer therapy targets the formation of new blood vessels used to support tumor growth. Although many of these agents are currently being tested in clinical trials, no reliable way to monitor the effects of many, if not most, of these therapeutic agents on the inhibition of the complicated process of angiogenesis exists. Dr. Robert S. Kerbel from Women’s College Health Sciences Centre in Toronto and colleagues, including Dr. Francesco Bertolini of the European Institute of Oncology in Milan and Dr. Robert D’Amato of Harvard University, examined whether circulating levels of a class of specific blood cells that contribute to the formation of tumor vessels provide any useful information about the effectiveness of angiogenesis inhibitors.

The researchers found that levels of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs) are quite varied depending on the genetic background of an animal. However, within a particular strain of mice, levels of these cells are influenced by known regulators of blood vessel formation and correlate remarkably with the ability to induce tumor blood vessel growth and the response to antiangiogenic therapy. Importantly, treatment with a drug that interfered with the major signaling receptor for vascular endothelial growth factor (VEGF), a key regulator of blood vessel development, caused a dose-dependent reduction in CEPs. The reduction in CEPs closely reflected the previously established antitumor activity of this VEGF inhibitor, and the optimal decline in CECs and CEPs was reached at the optimal antitumor dose.


The authors conclude that measuring peripheral blood cells can be used as a reliable surrogate for therapeutic inhibition of angiogenesis. "Our results highlight the possibility of a peripheral blood-based cellular assay to both measure and monitor angiogenesis, as well as to monitor antiangiogenic drug activity, the latter of which can be exploited to help establish the optimal biologic dose of such drugs," offers Dr. Kerbel.

Yuval Shaked, Francesco Bertolini, Shan Man, Michael S. Rogers, Dave Cervi, Thomas Foutz, Kimberley Rawn, Daniel Voskas, Daniel J. Dumont, Yaacov Ben-David, Jack Lawler, Jack Henkin, Jim Huber, Daniel J. Hicklin, Robert J. D’Amato, and Robert S. Kerbel: "Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate marker analysis of antiangiogenesis"

The context and implications of this work are discussed in a Preview by Schneider et al.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>