Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory chalenges current view of how brain stores long-term memory

17.01.2005


How do you remember your own name? Is it possible ever to forget it? The memory trace, or engram, "feels" like it is stored permanently in the brain and it will never be forgotten.



Indeed, the current view of memory is that, at the molecular level, new proteins are manufactured, in a process known as translation, and it is these newly synthesized proteins that subsequently stabilize the changes underlying the memory. Thus, every new memory results in a permanent representation in the brain.

But Northwestern University neuroscientist Aryeh Routtenberg has presented a provocative new theory that takes issue with that view. Routtenberg, with doctoral student Jerome L. Rekart, outlined the new theory on memory storage in the January issue of the journal Trends in Neuroscience.


Rather than permanent storage, there is a "dynamic, meta-stable" process, the authors said. Our subjective experience of permanence is a result of the re-duplication of memories across many different brain networks.

For example, one’s name is represented in innumerable neural circuits; thus, it is extremely difficult to forget. But each individual component is malleable and transient, and as no particular neural network lasts a lifetime, it is theoretically possible to forget one’s own name.

This is seen in the most advanced stages of Alzheimer’s disease, the researchers stated.

The advantage of such a precarious storage mechanism is that it is a highly flexible system, enabling rapid retrieval even of infrequent elements, with great advantages over models of permanent storage, said Routtenberg, professor in the department of psychology and in the department of neurobiology and physiology, Judd A. and Marjorie Weinberg College of Arts and Sciences and a leading researcher in the Institute for Neuroscience, Northwestern University.

To achieve this high degree of flexibility, Routtenberg’s new theory goes on to propose that the brain stores long-term memory by rapidly changing the shape of proteins already present at those synapses activated by learning.

While it is universally agreed that brain proteins are critical for memory storage, Routtenberg’s hypothesis challenges the widely accepted, 40-year-old model that long-term memories are stabilized only once newly synthesized proteins are transported to recently activated synapses.

Indeed, this view is central to the theory of Eric Kandel, who in his Nobel Prize address reinforced the central position of this model in forming long-term memory. So does memory form because you make more protein, as most neuroscientists believe, or because you change the shape of existing proteins, which are known to be strategically located to effect change within milliseconds of activation?

Part of the answer to this question lies in the fact that there are critical weaknesses in the prevailing view. "There are enough instances of memory storage in the virtual absence of protein synthesis to compel consideration of alternative models," said Routtenberg.

The authors noted that most of the evidence supporting the current view was obtained by studying the effects of certain drugs, called protein synthesis inhibitors, on memory, leading to the conclusion that synthesis was necessary. The authors outline specific evidence that calls those results into question.

For example, synthesis inhibitors that block the production of new proteins by more than 90 percent often cause no discernible memory impairments. Additionally, protein synthesis inhibitors cause a number of side effects that could lead to memory loss caused by something other than protein synthesis inhibition.

Routtenberg agrees with the view that it is the synapse that is modified in response to learning-associated activity, a position first articulated by Nobelist Ramon y Cajal a century ago. But the difference with the current theory is that he and Rekart do not believe that synaptic modification is brought about by recently synthesized proteins.

Routtenberg’s theory, derived from a consideration of extensive, fundamental biochemical information, advocates that learning leads to a post-synthesis (or, post-translational) synaptic protein modification that results in changes to the shape, activity and/or location of existing synaptic proteins. In the Routtenberg-Rekart proposal, this is the only mechanism required for long-term memory.

To maintain some residue of this modification, Routtenberg proposes that the "spontaneous activity" of the brain actually acts to "cryptically rehearse" past events. So, long-term memory storage relies on a positive-feedback rehearsal system that continually updates or fine-tunes post-translational modification of previously modified synaptic proteins. It is in this manner that this model allows for the continual modifications of memories.

In the Routtenberg-Rekart model, post-translational modifications within cells and synaptic dialog and endogenous activity between cells and networks work in concert to perpetuate and update memory representations.

A group of post-translational protein modifications that affect neuronal plasticity – present in activated pre-synaptic and post-synaptic elements and regulated by proteases, kinases and phosphatases – regulate the efficacy of the synapse in response to a learning event.

These modifications are, in turn, maintained via positive feedback between cells (dialog), which are regulated by synaptic excitation (e.g., via the neurotransmitter glutamate) or inhibition (e.g., via the neurotransmitter GABA).

Thus, the self-sustaining positive feedback system also carries built-in control mechanisms that would prevent runaway feedback leading to the detonation of one massive memory or "thermonuclear" engram.

Although Routtenberg’s model may represent a radical departure from the current view of how long-term memories are stored, he believes that scientists need to articulate alternative models other than the prevailing one.

A more accurate description will help address issues of memory loss in mental retardation, aging and Alzheimer’s disease. Indeed, new hypotheses can lead to the development of new chemical agents that would successfully target the chemical reactions necessary "We would assert that there is enough substance both in the concerns raised and in the post-translational modification/positive feedback model proposed to energize the search for yet more plausible models of long-term memory storage, and to redirect and reinvigorate the quest to understand the brain substrates of information storage," Routtenberg said.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>