Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rebuilding faces

17.01.2005


Surgeons are using a revolutionary implant to help rebuild the faces of children injured in accidents or born with serious defects.



Scientists from The University of Nottingham have teamed up with Russian researchers to create the honeycomb-like polymer which readily bonds with bone without causing adverse reactions.It is currently undergoing clinical trials in Moscow where it has been used on around fifty children aged from eighteen months to 18 years. Among the patients who have undergone surgery are a baby with a jaw tumour and a twelve-year-old girl who had been barely able to open her mouth from birth.

The ‘PolyHap’ implants have been developed by teams led by Professor Steve Howdle at The University of Nottingham, and Dr Vladimir Popov from the Institute of Laser and Information Technology in Troitsk, near Moscow. Their work is described in the current issue of Advanced Materials*. Funding has been provided by the Wellcome Trust, Britain’s biggest biomedical research charity.


The made-to-measure implants are light, tough, flexible and cheap, providing an excellent alternative to traditional titanium. Professor Howdle, of The University of Nottingham’s School of Chemistry, said: “Precision is vital in this type of operation since every injury will be unique in some way and the patient is obviously hoping for the best possible visual affect after surgery. “We are delighted that operations using the polymer implants have gone very well, especially as the surgeons are working with children who have suffered serious injuries.”

When a child is assessed for an operation at the St. Vladimir Children’s Hospital, Moscow, scientists use X-rays and tomography images to create a three-dimensional plastic cast of the damaged area. These solid biomodels, built by a high-tech process called laser stereolithography allow surgeons to plan operations with great precision before they even lift a scalpel.

Having assessed how much bone needs to be removed the scientists in Troitsk use stereolithography to make the individual PolyHap implants. The technique, which can be completed in a matter of hours, can be used to make the most intricate shapes which are then sent to the hospital. The outline of the implant is initially “drawn” by a laser beam which leaves a very fine coating of polymer. This process is repeated hundreds of times until the model is complete.

So far the Moscow operations have been carried out to correct jaw or skull deformities. But the implants can be adapted for any part of the skeleton. Professor Vitaly Roginsky, one of Russia’s leading children’s cranio-maxillofacial surgeons, said: “These implants allow us to carry out many more operations than before. They are easier to adjust and re-shape and give us much more flexibility in our work.”

The success of PolyHap implants is down to the introduction of a mineral-like substance called hydroxyapatite, which makes the polymer tough and ‘bone-friendly’. The collaborating scientists have also found a way to increase porosity – which is important for new bone growth - and clean out toxins from polymers using high-pressure carbon-dioxide. Without this process the implants could cause damaging reactions in the patients. Dr Popov said : “I am convinced polymers will take over from titanium in surgery in the coming years. Now we have found a way to make them stronger they are ideal for implants. “Our technique allows operations to be performed more quickly and efficiently, which is better for the patient and saves time and money for the hospital.”

Although the PolyHap implants have produced good results there is a possibility they might have to be replaced as the child grows and bones develop. So Professor Howdle and Dr Popov’s teams have started work on a bio-degradeable version which will slowly dissolve as the repairing bone begins to re-grow.

In order to make these ‘vanishing’ implants they are developing a new Surface Selective Laser Sintering technique. This involves using a laser beam to melt just the polymer surface, leaving the bioactive inner section intact – a crucial factor in creating a bio-degradeable implant. Professor Howdle said: “If we can push the development on to this stage it will mean children will only have to undergo one operation rather than several. The benefits from that are obvious.”

Professor John Lowry, Secretary General of the European Association for Cranio-Maxillofacial Surgery, said : “The technique being developed through this collaboration has some interesting innovations and once perfected or even further developed it should prove a great help to surgeons involved in this complex area of surgery.”

Twelve-year-old Kseniya Gordeeva underwent a PolyHap operation in Moscow recently. She had suffered jaw damage at birth and could barely open her mouth. Kseniya had to eat through a straw, had difficulty talking and found it almost impossible to clean her teeth. Because of the lack of normal nutrition she was also underweight for her age.

During a five-hour operation Professor Roginsky removed the section of damaged bone and inserted a two-inch implant. Nine days later she was able to open her mouth without so much effort and was clearly delighted. “If I wanted to get my mouth open before the operation I had to lean my head right back,” she said. “Now it is much easier. I can talk like my friends and eat normally. I don’t have a favourite food because everything I eat is special.”

Professor Roginsky said : “Kiseniya has made remarkable progress in a short time. We will have to do a little more work on her jaw but the improvement is already very noticeable. “Now she will be able to eat properly and grow into a fine, pretty girl.”

Anara Djantemiroma, 15, (picture available) is another of Professor Roginsky’s patients. She suffered under-development of the jaw as a young girl. This was corrected in a series of operations, the final one involving insertion of an implant.

Tim Utton | alfa
Further information:
http://www.nottingham.ac.uk
http://www.advmat.de

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>