Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rebuilding faces

17.01.2005


Surgeons are using a revolutionary implant to help rebuild the faces of children injured in accidents or born with serious defects.



Scientists from The University of Nottingham have teamed up with Russian researchers to create the honeycomb-like polymer which readily bonds with bone without causing adverse reactions.It is currently undergoing clinical trials in Moscow where it has been used on around fifty children aged from eighteen months to 18 years. Among the patients who have undergone surgery are a baby with a jaw tumour and a twelve-year-old girl who had been barely able to open her mouth from birth.

The ‘PolyHap’ implants have been developed by teams led by Professor Steve Howdle at The University of Nottingham, and Dr Vladimir Popov from the Institute of Laser and Information Technology in Troitsk, near Moscow. Their work is described in the current issue of Advanced Materials*. Funding has been provided by the Wellcome Trust, Britain’s biggest biomedical research charity.


The made-to-measure implants are light, tough, flexible and cheap, providing an excellent alternative to traditional titanium. Professor Howdle, of The University of Nottingham’s School of Chemistry, said: “Precision is vital in this type of operation since every injury will be unique in some way and the patient is obviously hoping for the best possible visual affect after surgery. “We are delighted that operations using the polymer implants have gone very well, especially as the surgeons are working with children who have suffered serious injuries.”

When a child is assessed for an operation at the St. Vladimir Children’s Hospital, Moscow, scientists use X-rays and tomography images to create a three-dimensional plastic cast of the damaged area. These solid biomodels, built by a high-tech process called laser stereolithography allow surgeons to plan operations with great precision before they even lift a scalpel.

Having assessed how much bone needs to be removed the scientists in Troitsk use stereolithography to make the individual PolyHap implants. The technique, which can be completed in a matter of hours, can be used to make the most intricate shapes which are then sent to the hospital. The outline of the implant is initially “drawn” by a laser beam which leaves a very fine coating of polymer. This process is repeated hundreds of times until the model is complete.

So far the Moscow operations have been carried out to correct jaw or skull deformities. But the implants can be adapted for any part of the skeleton. Professor Vitaly Roginsky, one of Russia’s leading children’s cranio-maxillofacial surgeons, said: “These implants allow us to carry out many more operations than before. They are easier to adjust and re-shape and give us much more flexibility in our work.”

The success of PolyHap implants is down to the introduction of a mineral-like substance called hydroxyapatite, which makes the polymer tough and ‘bone-friendly’. The collaborating scientists have also found a way to increase porosity – which is important for new bone growth - and clean out toxins from polymers using high-pressure carbon-dioxide. Without this process the implants could cause damaging reactions in the patients. Dr Popov said : “I am convinced polymers will take over from titanium in surgery in the coming years. Now we have found a way to make them stronger they are ideal for implants. “Our technique allows operations to be performed more quickly and efficiently, which is better for the patient and saves time and money for the hospital.”

Although the PolyHap implants have produced good results there is a possibility they might have to be replaced as the child grows and bones develop. So Professor Howdle and Dr Popov’s teams have started work on a bio-degradeable version which will slowly dissolve as the repairing bone begins to re-grow.

In order to make these ‘vanishing’ implants they are developing a new Surface Selective Laser Sintering technique. This involves using a laser beam to melt just the polymer surface, leaving the bioactive inner section intact – a crucial factor in creating a bio-degradeable implant. Professor Howdle said: “If we can push the development on to this stage it will mean children will only have to undergo one operation rather than several. The benefits from that are obvious.”

Professor John Lowry, Secretary General of the European Association for Cranio-Maxillofacial Surgery, said : “The technique being developed through this collaboration has some interesting innovations and once perfected or even further developed it should prove a great help to surgeons involved in this complex area of surgery.”

Twelve-year-old Kseniya Gordeeva underwent a PolyHap operation in Moscow recently. She had suffered jaw damage at birth and could barely open her mouth. Kseniya had to eat through a straw, had difficulty talking and found it almost impossible to clean her teeth. Because of the lack of normal nutrition she was also underweight for her age.

During a five-hour operation Professor Roginsky removed the section of damaged bone and inserted a two-inch implant. Nine days later she was able to open her mouth without so much effort and was clearly delighted. “If I wanted to get my mouth open before the operation I had to lean my head right back,” she said. “Now it is much easier. I can talk like my friends and eat normally. I don’t have a favourite food because everything I eat is special.”

Professor Roginsky said : “Kiseniya has made remarkable progress in a short time. We will have to do a little more work on her jaw but the improvement is already very noticeable. “Now she will be able to eat properly and grow into a fine, pretty girl.”

Anara Djantemiroma, 15, (picture available) is another of Professor Roginsky’s patients. She suffered under-development of the jaw as a young girl. This was corrected in a series of operations, the final one involving insertion of an implant.

Tim Utton | alfa
Further information:
http://www.nottingham.ac.uk
http://www.advmat.de

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>