Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rebuilding faces


Surgeons are using a revolutionary implant to help rebuild the faces of children injured in accidents or born with serious defects.

Scientists from The University of Nottingham have teamed up with Russian researchers to create the honeycomb-like polymer which readily bonds with bone without causing adverse reactions.It is currently undergoing clinical trials in Moscow where it has been used on around fifty children aged from eighteen months to 18 years. Among the patients who have undergone surgery are a baby with a jaw tumour and a twelve-year-old girl who had been barely able to open her mouth from birth.

The ‘PolyHap’ implants have been developed by teams led by Professor Steve Howdle at The University of Nottingham, and Dr Vladimir Popov from the Institute of Laser and Information Technology in Troitsk, near Moscow. Their work is described in the current issue of Advanced Materials*. Funding has been provided by the Wellcome Trust, Britain’s biggest biomedical research charity.

The made-to-measure implants are light, tough, flexible and cheap, providing an excellent alternative to traditional titanium. Professor Howdle, of The University of Nottingham’s School of Chemistry, said: “Precision is vital in this type of operation since every injury will be unique in some way and the patient is obviously hoping for the best possible visual affect after surgery. “We are delighted that operations using the polymer implants have gone very well, especially as the surgeons are working with children who have suffered serious injuries.”

When a child is assessed for an operation at the St. Vladimir Children’s Hospital, Moscow, scientists use X-rays and tomography images to create a three-dimensional plastic cast of the damaged area. These solid biomodels, built by a high-tech process called laser stereolithography allow surgeons to plan operations with great precision before they even lift a scalpel.

Having assessed how much bone needs to be removed the scientists in Troitsk use stereolithography to make the individual PolyHap implants. The technique, which can be completed in a matter of hours, can be used to make the most intricate shapes which are then sent to the hospital. The outline of the implant is initially “drawn” by a laser beam which leaves a very fine coating of polymer. This process is repeated hundreds of times until the model is complete.

So far the Moscow operations have been carried out to correct jaw or skull deformities. But the implants can be adapted for any part of the skeleton. Professor Vitaly Roginsky, one of Russia’s leading children’s cranio-maxillofacial surgeons, said: “These implants allow us to carry out many more operations than before. They are easier to adjust and re-shape and give us much more flexibility in our work.”

The success of PolyHap implants is down to the introduction of a mineral-like substance called hydroxyapatite, which makes the polymer tough and ‘bone-friendly’. The collaborating scientists have also found a way to increase porosity – which is important for new bone growth - and clean out toxins from polymers using high-pressure carbon-dioxide. Without this process the implants could cause damaging reactions in the patients. Dr Popov said : “I am convinced polymers will take over from titanium in surgery in the coming years. Now we have found a way to make them stronger they are ideal for implants. “Our technique allows operations to be performed more quickly and efficiently, which is better for the patient and saves time and money for the hospital.”

Although the PolyHap implants have produced good results there is a possibility they might have to be replaced as the child grows and bones develop. So Professor Howdle and Dr Popov’s teams have started work on a bio-degradeable version which will slowly dissolve as the repairing bone begins to re-grow.

In order to make these ‘vanishing’ implants they are developing a new Surface Selective Laser Sintering technique. This involves using a laser beam to melt just the polymer surface, leaving the bioactive inner section intact – a crucial factor in creating a bio-degradeable implant. Professor Howdle said: “If we can push the development on to this stage it will mean children will only have to undergo one operation rather than several. The benefits from that are obvious.”

Professor John Lowry, Secretary General of the European Association for Cranio-Maxillofacial Surgery, said : “The technique being developed through this collaboration has some interesting innovations and once perfected or even further developed it should prove a great help to surgeons involved in this complex area of surgery.”

Twelve-year-old Kseniya Gordeeva underwent a PolyHap operation in Moscow recently. She had suffered jaw damage at birth and could barely open her mouth. Kseniya had to eat through a straw, had difficulty talking and found it almost impossible to clean her teeth. Because of the lack of normal nutrition she was also underweight for her age.

During a five-hour operation Professor Roginsky removed the section of damaged bone and inserted a two-inch implant. Nine days later she was able to open her mouth without so much effort and was clearly delighted. “If I wanted to get my mouth open before the operation I had to lean my head right back,” she said. “Now it is much easier. I can talk like my friends and eat normally. I don’t have a favourite food because everything I eat is special.”

Professor Roginsky said : “Kiseniya has made remarkable progress in a short time. We will have to do a little more work on her jaw but the improvement is already very noticeable. “Now she will be able to eat properly and grow into a fine, pretty girl.”

Anara Djantemiroma, 15, (picture available) is another of Professor Roginsky’s patients. She suffered under-development of the jaw as a young girl. This was corrected in a series of operations, the final one involving insertion of an implant.

Tim Utton | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>