Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USC/Norris oncologists test new front-line therapy for pancreatic cancer


USC/Norris Comprehensive Cancer Center oncologists are testing the effectiveness of a new drug against pancreatic cancer that targets the cancer from two directions.

In their National Cancer Institute-sponsored phase II clinical trial, researchers are evaluating how well BAY 43-9006 works alone and paired with gemcitabine, today’s standard chemotherapy for pancreatic cancer. Heinz-Josef Lenz, M.D., associate professor of medicine at the Keck School of Medicine of USC, is principal investigator on the trial, which ultimately aims to add much-needed options to medicine’s sparse arsenal against pancreatic cancer. Cancer of the pancreas causes about 27,000 deaths each year in the United States alone. "Pancreatic cancer is a major health problem, because we do not yet have highly effective ways to deal with it," says Lenz, director of the gastrointestinal oncology program at USC/Norris. "The cancer is difficult to diagnose early, when it is most treatable, and can be aggressive. Because of the lack of effective systemic therapies, only 1 percent to 4 percent of patients will be alive five years after diagnosis."

But Lenz hopes that targeted medications such as BAY43-9006 will become part of first-line treatment and help patients respond better to chemotherapies.

In this study, researchers will recruit 90 patients with metastatic pancreatic carcinoma. Half of the patients will take a BAY 43-9006 pill twice daily for four weeks, while the other half will both take the pills and receive weekly infusions of gemcitabine for three weeks at a time. Oncologists will evaluate how well tumors respond to the drugs, as well as monitor for side effects. Patients whose cancers progress when taking the new drug alone will be switched to the gemcitabine group.

Unlike traditional chemotherapies, which kill fast-growing cells (even some non-cancerous ones), targeted drugs such as BAY 43-9006 focus exclusively on a few targets specific to cancer cells. In this case, the compound aims to work in two ways: by directly inhibiting critical growth pathways of the cancer cells (even potentially killing the cells), while also attacking the blood vessels needed to nourish the tumor, Lenz says.

BAY 43-9006’s first strategy is to disrupt cell signaling in what scientists call the Ras gene pathway. The Ras oncogene drives cell division and is critical to many cancers’ development; moreover, mutations in the Ras gene occur in 90 percent of pancreatic cancers. By throwing a roadblock in the Ras signaling pathway, BAY 43-9006 attempts to keep cancer cells from proliferating. "This compound also has anti-angiogenic activity," says Lenz. Angiogenesis is a process by which growing tumors recruit new blood vessels to keep them nourished. BAY 43-9006 is thought to inhibit angiogenesis by interfering with vascular endothelial growth factor (VEGF) receptors on blood vessel cells, as well as platelet-derived growth factor (PDGF) receptors, which are found on special cells that provide the external structure for blood vessels.

Encouraging results have already been reported from a phase II trial of the compound in renal cell carcinoma, or kidney cancer, and a phase I/II trial for the treatment of metastatic melanoma.

Sarah Huoh | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>