Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC/Norris oncologists test new front-line therapy for pancreatic cancer

14.01.2005


USC/Norris Comprehensive Cancer Center oncologists are testing the effectiveness of a new drug against pancreatic cancer that targets the cancer from two directions.



In their National Cancer Institute-sponsored phase II clinical trial, researchers are evaluating how well BAY 43-9006 works alone and paired with gemcitabine, today’s standard chemotherapy for pancreatic cancer. Heinz-Josef Lenz, M.D., associate professor of medicine at the Keck School of Medicine of USC, is principal investigator on the trial, which ultimately aims to add much-needed options to medicine’s sparse arsenal against pancreatic cancer. Cancer of the pancreas causes about 27,000 deaths each year in the United States alone. "Pancreatic cancer is a major health problem, because we do not yet have highly effective ways to deal with it," says Lenz, director of the gastrointestinal oncology program at USC/Norris. "The cancer is difficult to diagnose early, when it is most treatable, and can be aggressive. Because of the lack of effective systemic therapies, only 1 percent to 4 percent of patients will be alive five years after diagnosis."

But Lenz hopes that targeted medications such as BAY43-9006 will become part of first-line treatment and help patients respond better to chemotherapies.


In this study, researchers will recruit 90 patients with metastatic pancreatic carcinoma. Half of the patients will take a BAY 43-9006 pill twice daily for four weeks, while the other half will both take the pills and receive weekly infusions of gemcitabine for three weeks at a time. Oncologists will evaluate how well tumors respond to the drugs, as well as monitor for side effects. Patients whose cancers progress when taking the new drug alone will be switched to the gemcitabine group.

Unlike traditional chemotherapies, which kill fast-growing cells (even some non-cancerous ones), targeted drugs such as BAY 43-9006 focus exclusively on a few targets specific to cancer cells. In this case, the compound aims to work in two ways: by directly inhibiting critical growth pathways of the cancer cells (even potentially killing the cells), while also attacking the blood vessels needed to nourish the tumor, Lenz says.

BAY 43-9006’s first strategy is to disrupt cell signaling in what scientists call the Ras gene pathway. The Ras oncogene drives cell division and is critical to many cancers’ development; moreover, mutations in the Ras gene occur in 90 percent of pancreatic cancers. By throwing a roadblock in the Ras signaling pathway, BAY 43-9006 attempts to keep cancer cells from proliferating. "This compound also has anti-angiogenic activity," says Lenz. Angiogenesis is a process by which growing tumors recruit new blood vessels to keep them nourished. BAY 43-9006 is thought to inhibit angiogenesis by interfering with vascular endothelial growth factor (VEGF) receptors on blood vessel cells, as well as platelet-derived growth factor (PDGF) receptors, which are found on special cells that provide the external structure for blood vessels.

Encouraging results have already been reported from a phase II trial of the compound in renal cell carcinoma, or kidney cancer, and a phase I/II trial for the treatment of metastatic melanoma.

Sarah Huoh | EurekAlert!
Further information:
http://www.usc.edu
http://www.onyx-pharm.com/products/bay_43_9006.html

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>