Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug may aid battle against nicotine addiction, Alzheimer’s and other disorders

13.01.2005


Along with aiding efforts to study addicted smokers, a new drug that attaches only to areas of the brain that have been implicated in nicotine addiction may help studies of people battling other disorders such as Alzheimer’s disease and schizophrenia.



Developed by UC Irvine Transdisciplinary Tobacco Use Research Center scientists, the new drug – Nifrolidine – is a selective binding agent that identifies specific areas of the brain responsible for decision-making, learning and memory. Lead researcher Jogeshwar Mukherjee, UCI associate professor of psychiatry and human behavior, developed Nifrolidine to measure a subtype of nicotine receptors in the living brain by using an imaging technique, positron emission tomography, more commonly known as PET scans. After proving the drug’s effectiveness, Mukherjee believes the drug will have implications for other conditions, as well.

Study results appear in the January issue of the Journal of Nuclear Medicine.


“Nifrolidine is suited to provide reliable, quantitative information of these receptors and may therefore be very useful for future human brain imaging studies of nicotine addiction and other clinical conditions in which these brain regions have been implicated,” Mukherjee said.

He found in animal tests that Nifrolidine binds to receptors in the temporal and frontal cortex, areas that are responsible for learning and memory as well as reasoning, planning, problem solving and emotion. According to Mukherjee, patients with Alzheimer’s disease have been known to have a 30 percent to 50 percent loss of these receptors “If there is a gradual loss of these receptors over time, Nifrolidine could be a potential marker for early diagnosis of Alzheimer’s disease,” Mukherjee said.

Scientists have known that nicotine’s action on these receptors elicits dopamine in various brain regions implicated in nicotine addiction and other disorders. Nicotine acts by opening specific membrane proteins, called nicotinic receptors, and changing the electrical properties of the cell.

The human brain coordinates billions of neurons to mediate complex behaviors such as an infant learning to recognize his or her parents, a senior citizen learning to play piano, or the process of addiction following repetitive exposure to specific drugs. These behaviors all result from the formation of new connections between individual neurons or modifications of existing connections in the brain.

“Imaging of nicotine receptors also gives us the potential to study why some people are more addicted to nicotine than others,” Mukherjee said.

About the UCI Transdisciplinary Tobacco Use Research Center: The UCI TTURC is one of the original members of a national network of research centers funded jointly by the National Institute of Drug Abuse and National Cancer Institute in partnership with the Robert Wood Johnson Foundation. The major research focus of the UCI TTURC is to identify key factors that underlie susceptibility to nicotine addiction in adolescents and young adults.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Louri Groves | EurekAlert!
Further information:
http://www.uci.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>