Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reduced calorie and carbohydrate diet slows progression of Alzheimer’s disease in mouse model

13.01.2005


A Mount Sinai School of Medicine led study is the first to suggest that Alzheimer’s disease may be slowed and possibly prevented through dietary changes



Researchers found that a low carbohydrate diet that reduced total caloric intake by 30% prevented the development of a fundamental feature of Alzheimer’s disease (AD) in mice genetically engineered to develop the disease. The diet eliminated amyloid plaque development, which is the underlying pathology in AD. The study, published in the February issue of The FASEB Journal Express, is the first to demonstrate that a change in diet can slow and possibly prevent Alzheimer’s diseases.

"While it is far too early for us to make specific recommendations for human diets," said Giulio Maria Pasinetti, MD, PhD, Professor of Psychiatry, Neurosciences and Geriatrics and Adult Development at Mount Sinai School of Medicine and primary investigator on the study, "these findings provide the first solid evidence that dietary changes may provide a new approach to treatment and prevention of this devastating disease."


Dr. Pasinetti and his colleagues found that mice did not develop the physiological markers of the disease when they were fed a reduced carbohydrate diet that provided 70% of the calories eaten by similar mice who were allowed to eat ad-libitum. The strain of mice used in the study was genetically engineered to produce what are known as amyloidogenic â-amyloid peptides in the brain, resulting in formation of amyloid plaques which are known to be the fundamental problem in Alzheimer’ disease. Of the mice fed ad-libitum, 100% developed these plaques. No plaque development was detected in the mice fed a carbohydrate and calorie restricted diet.

The diet regimen was begun when the mice were 3-months old, which is considered young adult and is prior to the age at when this Alzheimer’s disease mouse model begins to develop plaques in the brain. The presence of plaques was evaluated at 12 months of age, which is an age at which plaques are known to be well developed in this strain.

The investigators found that anti-amyloidogenic activities were increased in mice fed the restricted diet. In other words, the calorie restricted diet activated pathways that break down amyloidogenic â-amyloid peptides in the brain before they form the plaques characteristic of AD.

"Since the diet only reduced calories by 30%, (based on carbohydrate) the mice developed normally," said Dr. Pasinetti. "While they did not gain weight like the mice in the control group, they did not loose weight either and remained within the boundaries considered a healthy weight. Nonetheless, this rather mild change in diet resulted in a remarkable measure of disease prevention. There is epidemiological evidence that humans who consume reduced calorie diets have a lower incidence of AD. Our investigation provides a possible rational for this observation and possible mechanisms through which caloric reduction may provide protection in Alzheimer’s disease."

Ongoing studies are investigating whether or not the prevention of plaque development in these mice also prevents behavioral decline and clinical studies are currently being designed at Mount Sinai School of Medicine to explore the applicability of this experimental evidence in Alzheimer’s disease cases.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>