Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report success in new molecular breast imaging technique

12.01.2005


Mayo Clinic Proceedings study finds small tumors detectable with gamma camera



Using a new specially designed gamma camera for breast imaging, Mayo Clinic researchers report in the January issue of Mayo Clinic Proceedings their success with a system they call molecular breast imaging. "By optimizing the camera to detect smaller breast lesions, this technique should aid in the detection of early-stage breast cancer, something that was not possible with conventional gamma cameras," says Michael O’Connor, Ph.D., Mayo Clinic radiologist.

In the study, 40 women with suspicious findings on mammogram underwent molecular breast imaging: Twenty-six women had 36 malignant lesions confirmed at surgery. Molecular breast imaging detected 33 of the 36 lesions. In addition, four cancers were detected that were not seen on mammogram. Stephen Phillips, M.D., a Mayo Clinic radiologist involved in the study, said the technique yielded the highest sensitivity yet reported for a gamma camera in the detection of small breast tumors (less than 1 centimeter), reporting an 86 percent rate of detection (19 of 22 cancers).


One key feature that distinguishes this technique from mammography is that it relies on differences in the metabolic behavior of tumors vs. normal breast tissue. In contrast, mammography relies on differences in the anatomic appearance of tumors vs. normal tissue, differences that can often be subtle and obscured by densities in the surrounding breast tissue.

"Approximately 25 to 40 percent of women have dense breast tissue, which decreases the chance that a cancer will be visible on their mammograms," says Douglas Collins, M.D., a Mayo Clinic radiologist, who also worked on the study. "With molecular breast imaging, the visibility of the tumor is not influenced by the density of the surrounding tissue, so this technique is well-suited to find cancers in women whose mammograms may not be very accurate."

Deborah Rhodes, M.D., a Mayo Clinic physician and lead researcher in the study, says, "We have long recognized that screening for breast cancer with mammograms may not be sufficient in some groups of women, particularly women at increased risk for breast cancer, many of whom also have dense breast tissue. We need a technique that can reliably find small breast tumors but is not impaired by dense breast tissue. Our early results suggest an important role for molecular breast imaging in filling this critical gap."

In addition to Drs. O’Connor, Phillips, Collins and Rhodes, Robin Smith, M.D., in the Mayo Clinic Breast Diagnostic Clinic was a researcher in the study.

In an editorial in the same issue of Mayo Clinic Proceedings, Rachel Brem, M.D., director of breast imaging and intervention at George Washington University Medical Center in Washington, D.C., says the Mayo Clinic study furthers knowledge and gives additional credibility to molecular breast imaging. Dr. Brem notes that additional studies are needed at multiple medical centers to help refine and advance the findings.

In the editorial, Dr. Brem commends the Mayo researchers and says, "I hope that with time, molecular breast imaging using a high-resolution breast-specific gamma camera will be embraced and used by breast imagers and nuclear medicine physicians for the benefit of women, for the improved diagnosis of breast cancer, and ultimately for better survival from breast cancer."

John Murphy | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>