Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report success in new molecular breast imaging technique

12.01.2005


Mayo Clinic Proceedings study finds small tumors detectable with gamma camera



Using a new specially designed gamma camera for breast imaging, Mayo Clinic researchers report in the January issue of Mayo Clinic Proceedings their success with a system they call molecular breast imaging. "By optimizing the camera to detect smaller breast lesions, this technique should aid in the detection of early-stage breast cancer, something that was not possible with conventional gamma cameras," says Michael O’Connor, Ph.D., Mayo Clinic radiologist.

In the study, 40 women with suspicious findings on mammogram underwent molecular breast imaging: Twenty-six women had 36 malignant lesions confirmed at surgery. Molecular breast imaging detected 33 of the 36 lesions. In addition, four cancers were detected that were not seen on mammogram. Stephen Phillips, M.D., a Mayo Clinic radiologist involved in the study, said the technique yielded the highest sensitivity yet reported for a gamma camera in the detection of small breast tumors (less than 1 centimeter), reporting an 86 percent rate of detection (19 of 22 cancers).


One key feature that distinguishes this technique from mammography is that it relies on differences in the metabolic behavior of tumors vs. normal breast tissue. In contrast, mammography relies on differences in the anatomic appearance of tumors vs. normal tissue, differences that can often be subtle and obscured by densities in the surrounding breast tissue.

"Approximately 25 to 40 percent of women have dense breast tissue, which decreases the chance that a cancer will be visible on their mammograms," says Douglas Collins, M.D., a Mayo Clinic radiologist, who also worked on the study. "With molecular breast imaging, the visibility of the tumor is not influenced by the density of the surrounding tissue, so this technique is well-suited to find cancers in women whose mammograms may not be very accurate."

Deborah Rhodes, M.D., a Mayo Clinic physician and lead researcher in the study, says, "We have long recognized that screening for breast cancer with mammograms may not be sufficient in some groups of women, particularly women at increased risk for breast cancer, many of whom also have dense breast tissue. We need a technique that can reliably find small breast tumors but is not impaired by dense breast tissue. Our early results suggest an important role for molecular breast imaging in filling this critical gap."

In addition to Drs. O’Connor, Phillips, Collins and Rhodes, Robin Smith, M.D., in the Mayo Clinic Breast Diagnostic Clinic was a researcher in the study.

In an editorial in the same issue of Mayo Clinic Proceedings, Rachel Brem, M.D., director of breast imaging and intervention at George Washington University Medical Center in Washington, D.C., says the Mayo Clinic study furthers knowledge and gives additional credibility to molecular breast imaging. Dr. Brem notes that additional studies are needed at multiple medical centers to help refine and advance the findings.

In the editorial, Dr. Brem commends the Mayo researchers and says, "I hope that with time, molecular breast imaging using a high-resolution breast-specific gamma camera will be embraced and used by breast imagers and nuclear medicine physicians for the benefit of women, for the improved diagnosis of breast cancer, and ultimately for better survival from breast cancer."

John Murphy | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>