Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt scientists study how cancer cells get out of control

07.01.2005


Research published in Science sheds light on cancer mechanisms, could lead to potential treatment approach

Researchers at the University of Pittsburgh have identified how a single aberrant cell can duplicate to form cancerous tumors, suggesting a specific protein mechanism as a target for the treatment of cancer, they report in a paper titled "Spindle Multipolarity Is Prevented by Centrosomal Clustering," published in the Jan. 7 issue of Science.

The team, led by William S. Saunders, associate professor of biological sciences in Pitt’s School of Arts and Sciences, found that overexpression of a single protein can cause changes in a cell associated with the formation of tumors. "Virtually all cancer cells acquire the ability to change their genomic structure," said Saunders. "Researchers in the field are looking for single events that can cause multiple mutational changes to the genome, and this research is an example of that."



Before a normal cell divides, its chromosomes are duplicated and then pulled apart by a structure called a spindle, so that the two daughter cells each will have the same number of chromosomes.

At the end of a normal spindle is the spindle pole, also called the centrosome, which pulls the chromosomes outward. Cancer cells often have extra centrosomes. When a cell has more than two centrosomes, sometimes--but not always--the spindles will have more than one pole and cell division won’t work correctly, leading to the swapping of genetic material, uncontrolled cell division, and the formation of tumors.

Why this doesn’t always happen when there are too many centrosomes was the focus of the Pitt researchers’ investigation. They found that as long as the extra centrosomes "cluster" together, the spindles will form normally, with two ends, and the cells will divide normally. "No one else appreciated that that was required, or what the mechanism was that separated them," said Saunders.

But when the extra centrosomes don’t cluster together, the spindles don’t form normally, and cell division can become unstable, reported Nicholas J. Quintyne, a postdoctoral fellow working with Saunders and first author of the paper.

Investigating the mechanism by which this occurs, the researchers found that in cultured oral cancer cells a protein called dynein is missing from the spindle, and the centrosomes no longer cluster together.

Furthermore, the researchers discovered that in some types of tumors, dynein is inhibited by the overexpression of another protein called NuMA. Excess NuMA seems to prevent dynein from binding to the spindle. When they reduced the level of NuMA in cultured cancer cells, the dynein returned to the spindles, and the spindles were no longer multipolar.

"This finding suggests that a possible treatment for some types of cancer could be a drug that inhibits NuMA," noted coauthor Susanne M. Gollin, professor of human genetics in Pitt’s Graduate School of Public Health and coinvestigator at the Oral Cancer Center of Discovery at the University of Pittsburgh Cancer Institute.

In the future, the researchers plan to look at other proteins that bind to NuMA and how these proteins interact in the process.

Karen Hoffmann | EurekAlert!
Further information:
http://www.upmc.edu
http://www.umc.pitt.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>