Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a tool to examine bone quality for space and Earth-based diagnosis

06.01.2005


A portable imaging device currently in development by the National Space Biomedical Research Institute (NSBRI) will produce clear, highly detailed pictures of bone and tissue, helping physicians manage bone health in space and on Earth. The Scanning Confocal Acoustic Diagnostic system, or SCAD, will enable doctors to determine the rate of loss and plan treatment options with the aid of high-quality images, taken noninvasively.



Studies of cosmonauts and astronauts who spent months on space station Mir revealed that space travelers can lose, on average, one-to-two percent of bone mass each month, with the greatest loss in the lower extremities like the femur and hip. The culprit is microgravity, which causes bone loss in critical areas and leaves bones susceptible to fracture upon return to Earth.

Space travelers are not the only demographic concerned with bone loss. According to the National Osteoporosis Foundation, at least 10 million people in the United States suffer from bone loss in the form of osteoporosis.


“Because bone weakening is a potentially serious side-effect of extended spaceflight, we’re developing a high-resolution ultrasound imaging device that can monitor and diagnose bone quantity, density and strength in space,” said Dr. Yi-Xian Qin, associate team leader of NSBRI’s technology development team. “We’re currently in the beginning phases of development, but eventually this technology can aid diagnosis for a number of skeletal disorders.”

The real-time, high-resolution, portable imaging device will use scanned, confocal ultrasound for generating images in regions of interest and identifying problems or risk factors. For flight surgeons on the ground, the SCAD will help to quickly determine the rate of bone loss, severity of injuries and possibilities for recovery.

“It will also provide immediate images of bone and assess both density and stiffness data,” said Qin, associate professor in the department of biomedical engineering at Stony Brook University in New York.

Compared to current ultrasound technology for measuring bone loss, the SCAD system provides image-based bone quality parameters in the region of interest, which can be directly related to the assessment of bone strength. The system can also increase the accuracy for ultrasound and reduce the acoustic noise from soft tissue and critical regions via real-time mapping of the bone. It consists of a computer-controlled miniaturized scanner and data acquisition and analysis software designed by a team composed of Stony Brook scientists, a physician and graduate students. In the future, the system will be designed to include wireless output for easy data transmission. The entire device is lightweight and easy to carry.

Qin sees his project in two phases: first; the development phase focusing on miniaturizing the device and fine-tuning its precision, and the second phase; eventual clinical trial and commercial buy-in. From shuttle flights and missions aboard the ISS to future interplanetary travel, the SCAD device could provide immediate emergency diagnosis for injuries or conditions that might otherwise halt a mission.

“Aside from use inflight, my goal is to make this device available to physicians across disciplines to improve the diagnosis of osteopenia and osteoporosis,” Qin said. “Because such diseases are essentially painless at the initial stages, they are difficult to pinpoint and often diagnosed late.”

The SCAD project is complemented by NSBRI teams looking at other space health concerns including adequate sleep, psychosocial factors, cardiovascular changes, muscle wasting, balance and orientation problems, and radiation exposure. While focusing on space health issues, the Institute will quickly transfer solutions to Earth patients suffering from similar conditions.

The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s research and education projects take place at more than 70 institutions across the United States.

Lauren Hammit | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Health and Medicine:

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>