Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a tool to examine bone quality for space and Earth-based diagnosis

06.01.2005


A portable imaging device currently in development by the National Space Biomedical Research Institute (NSBRI) will produce clear, highly detailed pictures of bone and tissue, helping physicians manage bone health in space and on Earth. The Scanning Confocal Acoustic Diagnostic system, or SCAD, will enable doctors to determine the rate of loss and plan treatment options with the aid of high-quality images, taken noninvasively.



Studies of cosmonauts and astronauts who spent months on space station Mir revealed that space travelers can lose, on average, one-to-two percent of bone mass each month, with the greatest loss in the lower extremities like the femur and hip. The culprit is microgravity, which causes bone loss in critical areas and leaves bones susceptible to fracture upon return to Earth.

Space travelers are not the only demographic concerned with bone loss. According to the National Osteoporosis Foundation, at least 10 million people in the United States suffer from bone loss in the form of osteoporosis.


“Because bone weakening is a potentially serious side-effect of extended spaceflight, we’re developing a high-resolution ultrasound imaging device that can monitor and diagnose bone quantity, density and strength in space,” said Dr. Yi-Xian Qin, associate team leader of NSBRI’s technology development team. “We’re currently in the beginning phases of development, but eventually this technology can aid diagnosis for a number of skeletal disorders.”

The real-time, high-resolution, portable imaging device will use scanned, confocal ultrasound for generating images in regions of interest and identifying problems or risk factors. For flight surgeons on the ground, the SCAD will help to quickly determine the rate of bone loss, severity of injuries and possibilities for recovery.

“It will also provide immediate images of bone and assess both density and stiffness data,” said Qin, associate professor in the department of biomedical engineering at Stony Brook University in New York.

Compared to current ultrasound technology for measuring bone loss, the SCAD system provides image-based bone quality parameters in the region of interest, which can be directly related to the assessment of bone strength. The system can also increase the accuracy for ultrasound and reduce the acoustic noise from soft tissue and critical regions via real-time mapping of the bone. It consists of a computer-controlled miniaturized scanner and data acquisition and analysis software designed by a team composed of Stony Brook scientists, a physician and graduate students. In the future, the system will be designed to include wireless output for easy data transmission. The entire device is lightweight and easy to carry.

Qin sees his project in two phases: first; the development phase focusing on miniaturizing the device and fine-tuning its precision, and the second phase; eventual clinical trial and commercial buy-in. From shuttle flights and missions aboard the ISS to future interplanetary travel, the SCAD device could provide immediate emergency diagnosis for injuries or conditions that might otherwise halt a mission.

“Aside from use inflight, my goal is to make this device available to physicians across disciplines to improve the diagnosis of osteopenia and osteoporosis,” Qin said. “Because such diseases are essentially painless at the initial stages, they are difficult to pinpoint and often diagnosed late.”

The SCAD project is complemented by NSBRI teams looking at other space health concerns including adequate sleep, psychosocial factors, cardiovascular changes, muscle wasting, balance and orientation problems, and radiation exposure. While focusing on space health issues, the Institute will quickly transfer solutions to Earth patients suffering from similar conditions.

The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s research and education projects take place at more than 70 institutions across the United States.

Lauren Hammit | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>