Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Residual tumor cells are a barrier to targeted cancer therapeutics

05.01.2005


Over the past five years, so-called molecularly targeted therapies for cancer have held out great promise. These therapies are based on blocking a cancer-causing genetic pathway that has been turned on in a tumor, thereby allowing it to proliferate and grow in an uncontrolled manner. For a small number of cancers, chronic treatment with molecularly targeted therapies has been shown to be effective in the clinic – at least in the short-term. Recently, based on animal models, several investigators have proposed that chronic treatment – possibly even brief treatment – with molecularly targeted therapies might eliminate cancers. Curing cancers with short-term treatment, however, contrasts sharply with clinical experience with cancer patients, say Penn researchers. This suggests that tumors often become resistant to therapy by finding a way around the genetic blockade.



Using a model for breast cancer, researchers in the Abramson Family Cancer Research Institute of the University of Pennsylvania report that after blocking the gene c-MYC, which is commonly overexpressed in human breast cancers, the tumor still persists. Senior author Lewis A. Chodosh, MD, PhD, Associate Professor, Departments of Cancer Biology and Medicine, and colleagues report their findings in the December issue of Cancer Cell.

Specifically, the group found that after turning off c-MYC in a mouse model, 50 percent of c-MYC-induced mammary cancers were still able to grow. They also found that residual cancer cells persisted in all animals – even those that were seemingly cancer-free. These residual cells quickly recovered their malignant properties either spontaneously or after the researchers reactivated MYC. Additionally, by sequentially turning the MYC gene on and off in these tumors in order to simulate the treatment of patients with multiple rounds of a molecularly targeted therapy, the investigators found that nearly every tumor eventually progressed to a state that was no longer dependent upon MYC for growth.


With these experiments, Chodosh and colleagues demonstrated that small numbers of breast cancer cells that remain following targeted therapy provide a means for cancers to escape and eventually recur. When tumors shrink in response to therapy, they leave residual cells that ultimately give rise to recurrences. Furthermore, if the targeted oncogene becomes reactivated in those cells, they grow into full-blown tumors very quickly. "Any way you look at it, when physicians apply a selective pressure to a tumor by blocking an oncogenic pathway, cells escape," says Chodosh. "They find a back door and progress to a more aggressive state that becomes independent of that pathway."

Chodosh concludes that the type of genetically engineered mouse models used in these MYC studies yield results that are very similar to what is observed in patients and that molecular therapies will likely need to be applied chronically to prevent the regrowth of residual tumor cells that remain after therapy. He further emphasizes that molecularly targeted therapies will need to be combined with agents that target secondary pathways of tumor escape in order to achieve lasting cures.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>