Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Residual tumor cells are a barrier to targeted cancer therapeutics

05.01.2005


Over the past five years, so-called molecularly targeted therapies for cancer have held out great promise. These therapies are based on blocking a cancer-causing genetic pathway that has been turned on in a tumor, thereby allowing it to proliferate and grow in an uncontrolled manner. For a small number of cancers, chronic treatment with molecularly targeted therapies has been shown to be effective in the clinic – at least in the short-term. Recently, based on animal models, several investigators have proposed that chronic treatment – possibly even brief treatment – with molecularly targeted therapies might eliminate cancers. Curing cancers with short-term treatment, however, contrasts sharply with clinical experience with cancer patients, say Penn researchers. This suggests that tumors often become resistant to therapy by finding a way around the genetic blockade.



Using a model for breast cancer, researchers in the Abramson Family Cancer Research Institute of the University of Pennsylvania report that after blocking the gene c-MYC, which is commonly overexpressed in human breast cancers, the tumor still persists. Senior author Lewis A. Chodosh, MD, PhD, Associate Professor, Departments of Cancer Biology and Medicine, and colleagues report their findings in the December issue of Cancer Cell.

Specifically, the group found that after turning off c-MYC in a mouse model, 50 percent of c-MYC-induced mammary cancers were still able to grow. They also found that residual cancer cells persisted in all animals – even those that were seemingly cancer-free. These residual cells quickly recovered their malignant properties either spontaneously or after the researchers reactivated MYC. Additionally, by sequentially turning the MYC gene on and off in these tumors in order to simulate the treatment of patients with multiple rounds of a molecularly targeted therapy, the investigators found that nearly every tumor eventually progressed to a state that was no longer dependent upon MYC for growth.


With these experiments, Chodosh and colleagues demonstrated that small numbers of breast cancer cells that remain following targeted therapy provide a means for cancers to escape and eventually recur. When tumors shrink in response to therapy, they leave residual cells that ultimately give rise to recurrences. Furthermore, if the targeted oncogene becomes reactivated in those cells, they grow into full-blown tumors very quickly. "Any way you look at it, when physicians apply a selective pressure to a tumor by blocking an oncogenic pathway, cells escape," says Chodosh. "They find a back door and progress to a more aggressive state that becomes independent of that pathway."

Chodosh concludes that the type of genetically engineered mouse models used in these MYC studies yield results that are very similar to what is observed in patients and that molecular therapies will likely need to be applied chronically to prevent the regrowth of residual tumor cells that remain after therapy. He further emphasizes that molecularly targeted therapies will need to be combined with agents that target secondary pathways of tumor escape in order to achieve lasting cures.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>