Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Residual tumor cells are a barrier to targeted cancer therapeutics

05.01.2005


Over the past five years, so-called molecularly targeted therapies for cancer have held out great promise. These therapies are based on blocking a cancer-causing genetic pathway that has been turned on in a tumor, thereby allowing it to proliferate and grow in an uncontrolled manner. For a small number of cancers, chronic treatment with molecularly targeted therapies has been shown to be effective in the clinic – at least in the short-term. Recently, based on animal models, several investigators have proposed that chronic treatment – possibly even brief treatment – with molecularly targeted therapies might eliminate cancers. Curing cancers with short-term treatment, however, contrasts sharply with clinical experience with cancer patients, say Penn researchers. This suggests that tumors often become resistant to therapy by finding a way around the genetic blockade.



Using a model for breast cancer, researchers in the Abramson Family Cancer Research Institute of the University of Pennsylvania report that after blocking the gene c-MYC, which is commonly overexpressed in human breast cancers, the tumor still persists. Senior author Lewis A. Chodosh, MD, PhD, Associate Professor, Departments of Cancer Biology and Medicine, and colleagues report their findings in the December issue of Cancer Cell.

Specifically, the group found that after turning off c-MYC in a mouse model, 50 percent of c-MYC-induced mammary cancers were still able to grow. They also found that residual cancer cells persisted in all animals – even those that were seemingly cancer-free. These residual cells quickly recovered their malignant properties either spontaneously or after the researchers reactivated MYC. Additionally, by sequentially turning the MYC gene on and off in these tumors in order to simulate the treatment of patients with multiple rounds of a molecularly targeted therapy, the investigators found that nearly every tumor eventually progressed to a state that was no longer dependent upon MYC for growth.


With these experiments, Chodosh and colleagues demonstrated that small numbers of breast cancer cells that remain following targeted therapy provide a means for cancers to escape and eventually recur. When tumors shrink in response to therapy, they leave residual cells that ultimately give rise to recurrences. Furthermore, if the targeted oncogene becomes reactivated in those cells, they grow into full-blown tumors very quickly. "Any way you look at it, when physicians apply a selective pressure to a tumor by blocking an oncogenic pathway, cells escape," says Chodosh. "They find a back door and progress to a more aggressive state that becomes independent of that pathway."

Chodosh concludes that the type of genetically engineered mouse models used in these MYC studies yield results that are very similar to what is observed in patients and that molecular therapies will likely need to be applied chronically to prevent the regrowth of residual tumor cells that remain after therapy. He further emphasizes that molecularly targeted therapies will need to be combined with agents that target secondary pathways of tumor escape in order to achieve lasting cures.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>