Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma treatment lesson

05.01.2005


For some years ago now biochemotherapy has replaced chemotherapy for the treatment of melanomas. In biochemotherapy, together with chemotherapuetic agents, substances that activate the patient’s immune system are used with the objective of obtaining a reinforced immune system in order to help the patient overcome the illness.



Now, however, the activity of a number of these activating substances has been questioned, given that they have not been found to extend the life of the patient compared to that undergoing the habitual chemotherapy treatment. This is why these activating substances and biochemotherapy treatment itself are being questioned and a number of studies suggest the removal of such substances from medication.

Beneficial or prejudicial?


In the Public University of the Basque Country, in 1992, they discovered that one of these activating substances had a prejudicial effect. We are referring to interleukin-2 (IL-2). This activating substance activates the immune system, but also the proliferation of tumorous cells. Thus, metastasis extends even further and the patient does not benefit at all.

Though armed with this fact, the researchers at the Basque University did not discard the possibility that this substance, if used appropriately, could turn out to be beneficial, i.e. its activity had to be better modulated.

The research began with the aim of discovering the processes that activate IL-2 within the cells. Concretely, IL-2 augments the level of glutathionation (GSH) within the cells, glutathione, in turn, being an element that accelerates cellular proliferation. But this GSH compound is found in all cells and, therefore, in cancerous cells. And this is why the metastasis regenerates.

Thus, in order to obtain beneficial effects using IL-2, the glutation in tumorous cells would have to be reduced in an alternative manner, and this was achieved by means of oxothiazolidine-carboxilate (OTZ).

Finding the appropriate patern of dosage

The OTZ compound had an important function; it had to reduce the glutation level in tumorous cells while leaving the healthy cells alone. In order to achieve this target it was essential to find the most suitable dosage for the administering of all the components, given that the obtained effect greatly depended on the order in which each of the substances was administered.

After a number of years of investigation, researchers have discovered this pattern. Firstly, the OTZ has to be given, then the chemotherapeutic agent and, finally, the IL-2 is administered. They are not single doses and the treatment is much more complex, but the order has to be this one.

Following this dosage pattern, researchers managed to reduce one of the most serious problems in chemotherapy - toxicity. This meant that the chemotherapy dosage could be increased and, if the investigation turned out to be successful, that the life of the patient would be extended. The quality of life would also be enhanced with this new treatment.

This has been demonstrated through trials over many years, starting with mice and, currently, in vitro trials are being undertaken with human cells. Positive results have been achieved in all these trials, the conclusion being that a substance should not be rejected out of hand as it may well be usage of the substance and not the substance itself which is not suitable.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com
http://www.elhuyar.com

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>