Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Melanoma treatment lesson


For some years ago now biochemotherapy has replaced chemotherapy for the treatment of melanomas. In biochemotherapy, together with chemotherapuetic agents, substances that activate the patient’s immune system are used with the objective of obtaining a reinforced immune system in order to help the patient overcome the illness.

Now, however, the activity of a number of these activating substances has been questioned, given that they have not been found to extend the life of the patient compared to that undergoing the habitual chemotherapy treatment. This is why these activating substances and biochemotherapy treatment itself are being questioned and a number of studies suggest the removal of such substances from medication.

Beneficial or prejudicial?

In the Public University of the Basque Country, in 1992, they discovered that one of these activating substances had a prejudicial effect. We are referring to interleukin-2 (IL-2). This activating substance activates the immune system, but also the proliferation of tumorous cells. Thus, metastasis extends even further and the patient does not benefit at all.

Though armed with this fact, the researchers at the Basque University did not discard the possibility that this substance, if used appropriately, could turn out to be beneficial, i.e. its activity had to be better modulated.

The research began with the aim of discovering the processes that activate IL-2 within the cells. Concretely, IL-2 augments the level of glutathionation (GSH) within the cells, glutathione, in turn, being an element that accelerates cellular proliferation. But this GSH compound is found in all cells and, therefore, in cancerous cells. And this is why the metastasis regenerates.

Thus, in order to obtain beneficial effects using IL-2, the glutation in tumorous cells would have to be reduced in an alternative manner, and this was achieved by means of oxothiazolidine-carboxilate (OTZ).

Finding the appropriate patern of dosage

The OTZ compound had an important function; it had to reduce the glutation level in tumorous cells while leaving the healthy cells alone. In order to achieve this target it was essential to find the most suitable dosage for the administering of all the components, given that the obtained effect greatly depended on the order in which each of the substances was administered.

After a number of years of investigation, researchers have discovered this pattern. Firstly, the OTZ has to be given, then the chemotherapeutic agent and, finally, the IL-2 is administered. They are not single doses and the treatment is much more complex, but the order has to be this one.

Following this dosage pattern, researchers managed to reduce one of the most serious problems in chemotherapy - toxicity. This meant that the chemotherapy dosage could be increased and, if the investigation turned out to be successful, that the life of the patient would be extended. The quality of life would also be enhanced with this new treatment.

This has been demonstrated through trials over many years, starting with mice and, currently, in vitro trials are being undertaken with human cells. Positive results have been achieved in all these trials, the conclusion being that a substance should not be rejected out of hand as it may well be usage of the substance and not the substance itself which is not suitable.

Garazi Andonegi | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>