Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson virologists coax HIV out of hiding

04.01.2005


New technique could lead to more effective therapies for AIDS



When researchers came up with the powerful cocktail of anti-HIV drugs known as highly active antiretroviral therapy (HAART), they hoped they had found a way to finally rid the body of the virus. But they were wrong. The virus instead goes into hiding, dormant and practically undetectable in the body – and impervious to attack. While HAART manages to keep the virus at bay, it’s still quite capable – given the right opportunity – of replicating and wreaking havoc on the body’s immune system.

Now, virologists at Jefferson Medical College, led by Roger J. Pomerantz, M.D., professor of medicine, biochemistry and molecular pharmacology and director of the Division of Infectious Diseases and Environmental Medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia, may have found a way to bring HIV out of hiding. They have shown that an immune cell protein called interleukin-7 (IL-7) can rouse the virus better than previously tried agents, making it vulnerable to drugs and the body’s immune system. If the new technique proves its mettle, the work could lead to improved treatments for HIV infection, and might be a step toward complete viral eradication.


The Jefferson team reports its findings January 4, 2005 in the Journal of Clinical Investigation.

Dr. Pomerantz, who is director of Jefferson’s Center for Human Virology and Biodefense, and his co-workers took blood cells from HIV-infected patients who had been taking HAART and who had undetectable levels of virus. Using a special technique, they screened the cells with several different drugs to determine what stimulated the latent virus the best. "To our surprise, it was IL-7," he says. "We don’t know why, but it is the best agent in terms of its ability to stimulate HIV out of latency that we’ve seen in the last 15 years." They found that the virus was stimulated to higher levels and was activated in more patients than with other compounds.

Dr. Pomerantz’s group also discovered that IL-7 appears to stimulate a group of sub-strains of HIV that are different than those brought out of latency by other agents, such as IL-2, another immune cytokine, or OKT3, a monoclonal antibody. He suspects such strains may be from an unknown viral reservoir in the blood. "IL-7 may teach us something," he says. "We’re not sure why only these certain strains are affected. We think we’ve found a new population, a new reservoir of HIV that has not been seen before. It’s probably a sub-population of blood cells, lymphocytes not stimulated by IL-2 or OKT3. There could be other reservoirs as well."

Ultimately, he says, the answer to the latency problem may entail using a combination of drugs. "We may need more than one drug to stimulate virus from latency, similar to using HAART to stop replication," he says, referring to this approach . "We may have to combine IL-2 with IL-7 and other agents to get to the reservoirs of virus."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>