Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healthy mix of GI tract microbes are key to preventing allergies and asthma

23.12.2004


If you want to avoid allergies or asthma, scientists at the University of Michigan Medical School suggest you start paying more attention to what’s in your gut.

In the January 2005 issue of Infection & Immunity, U-M researchers report new evidence suggesting that changes in the normal mixture of microflora – bacteria and fungi in the gastrointestinal tract – can intensify the immune system’s reaction to common allergens, like pollen or animal dander, in the lung and increase the risk of developing chronic allergies or asthma.

"Our research indicates that microflora lining the walls of the gastrointestinal tract are a major underlying factor responsible for the immune system’s ability to ignore inhaled allergens," says Gary Huffnagle, Ph.D., an associate professor of internal medicine and of microbiology and immunology in the U-M Medical School. "Change the microflora in the gut and you upset the immune system’s balance between tolerance and sensitization."



To test their hypothesis, Huffnagle and Mairi C. Noverr, Ph.D., a U-M post-doctoral fellow, have developed the first mouse model designed to mimic how humans develop allergies following antibiotic therapy. In a just-published study in the current issue of Infection & Immunity, they report results of new experiments linking changes in GI tract microflora to an overzealous allergic response in the lung.

Instead of sensitizing them to an allergen in advance, Noverr gave normal Balb/C laboratory mice a five-day course of antibiotics, which killed their gut bacteria, followed by a single oral introduction of the yeast Candida albicans. Increased growth of C. albicans in the gut is a common side-effect of antibiotics.

After stopping the antibiotics, Noverr inserted ovalbumin – a commonly used experimental allergen derived from egg whites – via the nasal cavities of all the mice in the study. Then, she examined the mice for the presence of an allergic response in the airways and compared results between mice that received antibiotics and those that did not.

"The antibiotic-treated mice showed increased airway hypersensitivity to ovalbumin

compared to mice that didn’t receive antibiotics," Noverr says. "These results confirm our previous experiments, in which we used a genetically different strain of laboratory mice [C57BL/6] and a different type of allergen – mold spores, instead of ovalbumin."

Results of Huffnagle and Noverr’s previous work were published in the August, 2004 issue of Infection & Immunity. It was the first study linking changes in GI tract microflora to an allergic response in the lung.

"In our new study, we found that differences in host genetics and the type of allergen used didn’t matter. The immune responses were literally identical," Huffnagle says. "It confirms our earlier findings that gut microflora are the key to maintaining a balanced immune response, that changing the composition of microflora in the gut predisposes animals to allergic airway disease, and that allergic sensitization can occur outside the lungs."

Noverr and Huffnagle suspect that changes in gut microflora caused by widespread use of antibiotics and a modern high-fat, high-sugar, low-fiber diet could be responsible for a major increase, over the last 40 years, in cases of chronic asthma and allergies in Western industrialized countries.

"The recent increase in allergies and asthma has been attributed to what’s called the ’hygiene hypothesis,’ the idea that children in Western countries are not exposed to enough infections early in life to prevent the immune system from reacting to harmless antigens," Noverr explains. "We’re coming at it from a different angle. Our emphasis is on what’s going on in the GI tract."

The link between lung and gut may not seem obvious at first. But Huffnagle points out that every time we swallow, particles of dust, pollen and spores – trapped by mucus-producing cells and tiny hairs lining the respiratory tract – are washed into the stomach where they come in direct contact with immune cells in the GI tract.

"Think of the body as a big tube with everything from nose to rear end exposed to allergens from the outside world," Huffnagle says. "The immune system’s normal response to all this stuff we constantly inhale is to actively ignore it – a reaction we call tolerance. The key to tolerance is an immune cell called a regulatory T cell."

Discovered just a few years ago, regulatory T cells are under intense research scrutiny, because of their ability to moderate or cool down the immune response.

"If lungs are repeatedly exposed to an allergen, regulatory T cells learn to recognize the allergen as not dangerous and something that can be safely ignored," Huffnagle says. "Most researchers think that tolerance develops in the lungs, but we believe it actually occurs in the gut. When immune cells in the GI tract come in contact with swallowed allergens, that interaction triggers the development of regulatory T cells, which then migrate to the lungs."

Everyone has a personal microbial fingerprint – a unique mix of bacteria and fungi living in the stomach and intestines – which develops in the first years of life. As long as the balance of gut microflora remains stable, tolerance continues. But anything that alters this intestinal balance – taking antibiotics, switching from breast milk to formula, eating a high-sugar, low-fat diet – interferes with the system and can lead to problems.

"One short course of antibiotics is not going to give everyone allergies," Huffnagle says. "But if you are taking antibiotics while your diet consists of white bread and fried food, you are not going to maintain the healthy microflora balance you need to maintain tolerance. If you inhale mold spores or pollen during this period, our studies indicate you are much more likely to become sensitized to them."

In future research, Huffnagle hopes to learn whether changing only the diet of his experimental mice will alter gut microflora and change the immune response to allergens in the same way as antibiotics. Noverr plans to focus on identifying the microbial compounds that activate the immune response and learning how bacterial dietary supplements called probiotics can affect this microbial balance in a positive way.

"We are not advocating that people stop using antibiotics when they are medically necessary," Huffnagle cautions. "But we are advocating that people understand the importance of eating a healthy diet, with lots of fruits and vegetables, after taking antibiotics to help restore the normal mix of GI microflora as quickly as possible."

Noverr and Huffnagle’s research is funded by the National Institutes of Health and a New Investigator Award from the Burroughs-Wellcome Fund. Other U-M collaborators in the study were Nicole R. Falkowski and Rod A. McDonald, research associates, and Andrew N. McKenzie of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>