Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers find PDAs okay with pacemakers

22.12.2004


With the dynamic evolution of wireless technology, Mayo Clinic researchers have been concerned about the potential effects of electromagnetic interference on heart pacemakers and implantable cardioverter-defibrillators. In the current issue of Mayo Clinic Proceedings, researchers report they did not detect interference from personal digital assistants (PDAs).



The findings are important because wireless communication has grown and advanced quickly. Hospitals and clinics have installed wireless local area networks (WLAN), which enable users to establish a wireless network connection with computers or other data devices throughout a building or multiple buildings that have the necessary data infrastructure in place. The wireless capabilities allow physicians and other health care professionals immediate access to a variety of information when evaluating and treating patients. Patients also are carrying wireless devices and need to understand if there would be any adverse reactions to implantable cardiac devices.

David Hayes, M.D., a Mayo Clinic physician and lead researcher in the study, says researchers did not expect to find interference based on their past experiences with other devices they have tested.


"When new devices are used near a patient with a life-sustaining implantable device, there is a potential of electromagnetic interference, and assessment of potential interactions is critical," says Dr. Hayes. "Despite the increasing sophistication of sensing circuitry in contemporary pacemakers and implantable cardioverter-defibrillators, these devices are still susceptible to electromagnetic interference and physicians need good data telling them which ones are or aren’t. And as technology advances, we’ll need continual testing to stay up to date."

In the Mayo Clinic study, testing was conducted between March 6 and July 30, 2003, using devices outside of the body. The cardiac devices were exposed to an HP Compaq iPAQ Pocket PC personal digital assistant fitted with a Cisco Aironet WLAN card. The testing of devices that had not been implanted was done for clinical safety purposes, says Dr. Hayes. However, he says testing of devices inside a patient’s body would be easy to design and conduct.

"Such testing is necessary to provide definitive answers for individual patients," says Dr. Hayes. "For example, a patient who is pacemaker dependent may ask whether a specific WLAN device can be used and/or carried safely in a coat pocket when turned on near the patient’s implanted device."

Dr. Hayes suggests that a template for further study could be from the cellular telephone study he led which was published in 1997 in the New England Journal of Medicine. That study tested numerous implanted devices with the most commonly available cellular telephones and with cellular telephones not yet commercially available but representing a different "frequency" or design. Testing for the PDA study followed methods provided in the American National Standards Institute/Association for the Advancement of Medical Instrumentation Pacemaker Committee protocol.

"As other wide local area network products are developed and made commercially available, additional testing will be needed to ensure clinical safety," Dr. Hayes says.

Researchers involved in the study were Jeffrey Tri, Jane Trusty and Dr. Hayes.

John Murphy | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com)

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>