Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers find PDAs okay with pacemakers

22.12.2004


With the dynamic evolution of wireless technology, Mayo Clinic researchers have been concerned about the potential effects of electromagnetic interference on heart pacemakers and implantable cardioverter-defibrillators. In the current issue of Mayo Clinic Proceedings, researchers report they did not detect interference from personal digital assistants (PDAs).



The findings are important because wireless communication has grown and advanced quickly. Hospitals and clinics have installed wireless local area networks (WLAN), which enable users to establish a wireless network connection with computers or other data devices throughout a building or multiple buildings that have the necessary data infrastructure in place. The wireless capabilities allow physicians and other health care professionals immediate access to a variety of information when evaluating and treating patients. Patients also are carrying wireless devices and need to understand if there would be any adverse reactions to implantable cardiac devices.

David Hayes, M.D., a Mayo Clinic physician and lead researcher in the study, says researchers did not expect to find interference based on their past experiences with other devices they have tested.


"When new devices are used near a patient with a life-sustaining implantable device, there is a potential of electromagnetic interference, and assessment of potential interactions is critical," says Dr. Hayes. "Despite the increasing sophistication of sensing circuitry in contemporary pacemakers and implantable cardioverter-defibrillators, these devices are still susceptible to electromagnetic interference and physicians need good data telling them which ones are or aren’t. And as technology advances, we’ll need continual testing to stay up to date."

In the Mayo Clinic study, testing was conducted between March 6 and July 30, 2003, using devices outside of the body. The cardiac devices were exposed to an HP Compaq iPAQ Pocket PC personal digital assistant fitted with a Cisco Aironet WLAN card. The testing of devices that had not been implanted was done for clinical safety purposes, says Dr. Hayes. However, he says testing of devices inside a patient’s body would be easy to design and conduct.

"Such testing is necessary to provide definitive answers for individual patients," says Dr. Hayes. "For example, a patient who is pacemaker dependent may ask whether a specific WLAN device can be used and/or carried safely in a coat pocket when turned on near the patient’s implanted device."

Dr. Hayes suggests that a template for further study could be from the cellular telephone study he led which was published in 1997 in the New England Journal of Medicine. That study tested numerous implanted devices with the most commonly available cellular telephones and with cellular telephones not yet commercially available but representing a different "frequency" or design. Testing for the PDA study followed methods provided in the American National Standards Institute/Association for the Advancement of Medical Instrumentation Pacemaker Committee protocol.

"As other wide local area network products are developed and made commercially available, additional testing will be needed to ensure clinical safety," Dr. Hayes says.

Researchers involved in the study were Jeffrey Tri, Jane Trusty and Dr. Hayes.

John Murphy | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com)

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>