Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tracing the life cycle of a manmade disease


MGH surgeon tells 40-year tale of investigation and innovation into the challenge of hip implant failure

A remarkable story of how a new disease was inadvertently caused by successful medical treatment, ultimately understood, and eventually defeated by scientific innovation is being told a major player in the process. In the December issue of Clinical Orthopedics and Related Research, William Harris, MD, DSc, of Massachusetts General Hospital (MGH), describes how the development of total hip replacement led to an unexpected problem, erosion of bone adjacent to the implant, and how his team and others both identified the process underlying that breakdown and helped to develop new materials that avoid the problem. "The history of the unraveling and prevention of this worldwide, unique, severe disease is a fascinating story of the integration of surgical innovation, molecular biology and material science," writes Harris, who is Alan Gerry Clinical Professor of Orthopaedic Surgery at Harvard Medical School.

Harris was a pioneer in the field of joint replacement, beginning in the late 1960s. But he and other surgeons gradually observed that hip implants could loosen starting about 5 years after surgery and eventually fail completely. There were many theories about the cause of that loosening, several which focused on the adhesive used or the possibility of infection.

In 1976 Harris reported that implant failures appeared to be caused by a biological response at the site of the implant, which resulted in erosion of the bone. Looking further into the complication, Harris and colleagues found that, when the metal head of the implant rubbed against the polyethylene joint socket, small particles of polyethylene broke off over time. As the immune system reacted against these foreign particles, eventually it would attack and destroy the bone tissue, loosening the implant to the point of failure. It turned out that this complication was an entirely new manmade disease called periprosthetic osteolysis – a condition spawned inadvertently by the medical pioneers who, in finding a treatment for debilitating hip disease, had created a whole new problem.

In the early 1990s, Harris and his team began to focus their attention on finding a way to decrease the wear and tear of the polyethylene cushion in the joint, with an ultimate goal of eliminating osteolysis. The team’s initial work involved designing a hip simulator that could accurately replicate the motions and forces of the human hip and measure the wear performance of the implant. The MGH group then turned to a team of polymer chemists from Massachusetts Institute of Technology (MIT) for help in figuring out just how to make a polyethylene cushion that would resist wear and erosion through years of constant motion and weight. They eventually found the solution by "crosslinking" the polyethylene, which involves using a high dose of irradiation to bond molecules more tightly together, producing a much stronger and more durable material. Out of this MGH-MIT collaboration emerged a highly crosslinked, ultra-high-molecular-weight polyethylene.

The research team improved and refined the material by putting it through a melting process to eliminate any free radicals that could cause oxidation and lead to the degradation of the implant material. The material continued to prove strong and reliable in several studies, showing virtually no wear even after being subjected to excessive use and intense abuse. In 1999, the FDA approved highly crosslinked polyethylene for use in implants, the manufacture of which has been licensed to Zimmer, Inc. In subsequent years, the compound has continued to hold up exceptionally well, improving the long-term outlook for patients and expanding the field of total joint replacement.

"The availability of implants with crosslinked polyetheylene has made a great deal of difference for patient care," Harris says. "For example, we used to be reluctant to do total hip replacements in young people because of the long-term risk of periprosthetic osteolysis, which led to doing some less satisfactory types of procedures that only postponed the need for an total hip. While we are still careful about doing hip replacements in any patients, current evidence suggests that the incidence of osteolysis is extraordinarily low with the new implants, making the procedure appropriate for a broader range of patients."

Peter L. Slavin, MD, MGH president, recently said of this accomplishment, "The key beneficiaries of this work are patients throughout the world who, thanks to Dr. Harris and his team, now have the chance to experience a better quality of life for a much longer time."

Sue McGreevey | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>