Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body’s biological clock found to affect cardiac rhythm patterns in healthy adults

21.12.2004


Statistical physics approach to analysis of heartbeat pattern uncovers link to circadian cycle



In a newly reported, first-ever finding, physicists from Boston University and physiologists from Boston’s Brigham and Women’s Hospital (BWH) have found that the body’s biological clock affects the patterns of heart-rate control in healthy individuals independent of sleep/wake cycle or other behavior influences. Their analysis of the heartbeat dynamics of the healthy individuals in the study showed significant circadian rhythm, including a notable response at the internal circadian phase corresponding to 10 a.m., the time of day most often linked to adverse cardiac events in individuals with heart disease.

The BU/BWH team reports its findings in the Dec. 28 issue of the Proceedings of the National Academy of Sciences. Sponsored by grants from the National Institutes of Health, the institutional teams were led by Plamen Ivanov, a research associate in BU’s Center for Polymer Studies, who undertook the analysis of the data, and Steven Shea, director of BWH’s medical chronobiology program and associate professor of medicine at Harvard Medical School, who conducted the experimental part of the research.


Cardiac disease is the leading cause of death in the United States, accounting for 29 percent of the deaths from the nation’s 10 leading causes (including homicides and accidents), according to the latest statistics (2001) available from the National Center for Health Statistics.

When designing their study of this deadly disease, the BU/BWH team drew on seemingly disparate findings in epidemiology, cardiology, circadian biology, biomedical engineering, and physics to construct an approach that would assess heartbeat fluctuations in healthy individuals at different circadian phases. In addition, they choose to analyze the data from these individuals using tools from statistical physics that describe relationships between the frequencies of large and small events. With these tools, the researchers hoped to find whether underlying patterns in the heartbeat data of the study participants were affected by the circadian phases.

For more than a decade, researchers at the Center for Polymer Studies have applied statistical physics methods to investigations of cardiac dynamics, probing for hidden patterns. Previous statistical evaluations of heartbeat fluctuations by Ivanov and others have shown that those of healthy subjects exhibit a self-similar structure over a range of time scales, that is, the fluctuations found in a window of 10 beats will be statistically similar to those found in a heartbeat interval of 100 beats and or one of 1000 beats.

"These studies have demonstrated that this self-similar structure in the temporal order of heartbeat fluctuations changes with certain behaviors, such as sleep or wake, rest or exercise," explains Ivanov. "Based on these observations, we hypothesized that these dynamic patterns will also change with circadian rhythm. This provided the impetus for the study design."

Epidemiological studies, too, have shown a pattern to events associated with heartbeat irregularities such as myocardial infarction, stroke, angina, arrhythmias and sudden cardiac death. These events have been found to have a strong 24-hour day/night pattern and, intriguingly, have been found to occur most often around 10 a.m.

Day/night patterns of disease severity are often associated with sleep/wake behavior but, the researchers hypothesized, they can also be linked to an internal body clock, the endogenous circadian pacemaker that controls much of our physiology, even when behaviors are unchanged. Body temperature, Shea notes, rises during the day and falls at night even when a person doesn’t sleep at night. The circadian cycle usually "resets" itself daily in response to certain external cues, most especially bright light, such as sunlight.

To remove any influence from the sleep/wake cycle, Shea and his team employed a "forced desynchrony" protocol on the five healthy volunteers who participated in the study. For 10 days, the participants lived in dimly lit rooms cut off from any outside stimuli or time cues. The researchers adjusted scheduled behaviors (sleeping periods, eating, and the like), gradually shifting the behavior patterns until the participants had a 28-hour day, about 19 hours awake and 9 hours asleep. This 28-hour sleep/wake schedule was sustained for seven "days," while core body temperatures, used to mark participants’ internal circadian phases, continued to oscillate with an approximate 24-hour period, indicating their sleep/wake cycles had been experimentally separated from their circadian cycles.

Using heartbeat data gathered from the participants throughout the 10-day desynchrony, Ivanov and BU team members Kun Hu and Zhi Chen, research assistants in physics, estimated correlations in the heartbeat fluctuations according to a power law function quantified using a method known as a detrended fluctuation analysis (DFA). The DFA mathematically describes the fluctuations at different time scales in the heartbeat signal and produces a scaling exponent that characterizes the degree of correlation between heartbeat intervals. If, for example, the scaling exponent, known as á, equaled 0.5, the interval fluctuations showed no correlation; if á equaled 1.5, the interval fluctuations were considered to be without control, exhibiting a so-called random walk property. If, however, á fell between 0.5 and 1.5, the interval fluctuations were considered to be organized and physiologically controlled. Interestingly, research studies have associated á values progressing toward 1.5 with pathological conditions, such as congestive heart failure.

When the team analyzed wake period data, they found a striking correlation: á values changed according to the internal body clock time. At 2 a.m., the value was 0.8; at 5 p.m., it was 1.0. However, at 10 a.m., the time of day found to have the greatest incidence of cardiac incidents, the team found the value was 1.2, edging toward the value linked with congestive heart failure. The team likewise found strong circadian rhythms whether data were considered only from the awake period or only from the sleep period.

"We are tempted to speculate that if the same circadian effect occurs in people with diseased hearts, then this may contribute to the day/night pattern of cardiac events," says BWH’s Shea. "But this was only a study on healthy subjects, and, therefore, we are a long way from making clinical recommendations. Further studies could, however, provide insight to the underlying cause of the disease -- and to therapies that might work better by being timed to the specific phases of the body clock."

Brigham and Women’s Hospital is a 735-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare System, an integrated health care delivery network. Internationally recognized as a leading academic health care institution, BWH is committed to excellence in patient care, medical research, and the training and education of health care professionals.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>