Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body’s biological clock found to affect cardiac rhythm patterns in healthy adults

21.12.2004


Statistical physics approach to analysis of heartbeat pattern uncovers link to circadian cycle



In a newly reported, first-ever finding, physicists from Boston University and physiologists from Boston’s Brigham and Women’s Hospital (BWH) have found that the body’s biological clock affects the patterns of heart-rate control in healthy individuals independent of sleep/wake cycle or other behavior influences. Their analysis of the heartbeat dynamics of the healthy individuals in the study showed significant circadian rhythm, including a notable response at the internal circadian phase corresponding to 10 a.m., the time of day most often linked to adverse cardiac events in individuals with heart disease.

The BU/BWH team reports its findings in the Dec. 28 issue of the Proceedings of the National Academy of Sciences. Sponsored by grants from the National Institutes of Health, the institutional teams were led by Plamen Ivanov, a research associate in BU’s Center for Polymer Studies, who undertook the analysis of the data, and Steven Shea, director of BWH’s medical chronobiology program and associate professor of medicine at Harvard Medical School, who conducted the experimental part of the research.


Cardiac disease is the leading cause of death in the United States, accounting for 29 percent of the deaths from the nation’s 10 leading causes (including homicides and accidents), according to the latest statistics (2001) available from the National Center for Health Statistics.

When designing their study of this deadly disease, the BU/BWH team drew on seemingly disparate findings in epidemiology, cardiology, circadian biology, biomedical engineering, and physics to construct an approach that would assess heartbeat fluctuations in healthy individuals at different circadian phases. In addition, they choose to analyze the data from these individuals using tools from statistical physics that describe relationships between the frequencies of large and small events. With these tools, the researchers hoped to find whether underlying patterns in the heartbeat data of the study participants were affected by the circadian phases.

For more than a decade, researchers at the Center for Polymer Studies have applied statistical physics methods to investigations of cardiac dynamics, probing for hidden patterns. Previous statistical evaluations of heartbeat fluctuations by Ivanov and others have shown that those of healthy subjects exhibit a self-similar structure over a range of time scales, that is, the fluctuations found in a window of 10 beats will be statistically similar to those found in a heartbeat interval of 100 beats and or one of 1000 beats.

"These studies have demonstrated that this self-similar structure in the temporal order of heartbeat fluctuations changes with certain behaviors, such as sleep or wake, rest or exercise," explains Ivanov. "Based on these observations, we hypothesized that these dynamic patterns will also change with circadian rhythm. This provided the impetus for the study design."

Epidemiological studies, too, have shown a pattern to events associated with heartbeat irregularities such as myocardial infarction, stroke, angina, arrhythmias and sudden cardiac death. These events have been found to have a strong 24-hour day/night pattern and, intriguingly, have been found to occur most often around 10 a.m.

Day/night patterns of disease severity are often associated with sleep/wake behavior but, the researchers hypothesized, they can also be linked to an internal body clock, the endogenous circadian pacemaker that controls much of our physiology, even when behaviors are unchanged. Body temperature, Shea notes, rises during the day and falls at night even when a person doesn’t sleep at night. The circadian cycle usually "resets" itself daily in response to certain external cues, most especially bright light, such as sunlight.

To remove any influence from the sleep/wake cycle, Shea and his team employed a "forced desynchrony" protocol on the five healthy volunteers who participated in the study. For 10 days, the participants lived in dimly lit rooms cut off from any outside stimuli or time cues. The researchers adjusted scheduled behaviors (sleeping periods, eating, and the like), gradually shifting the behavior patterns until the participants had a 28-hour day, about 19 hours awake and 9 hours asleep. This 28-hour sleep/wake schedule was sustained for seven "days," while core body temperatures, used to mark participants’ internal circadian phases, continued to oscillate with an approximate 24-hour period, indicating their sleep/wake cycles had been experimentally separated from their circadian cycles.

Using heartbeat data gathered from the participants throughout the 10-day desynchrony, Ivanov and BU team members Kun Hu and Zhi Chen, research assistants in physics, estimated correlations in the heartbeat fluctuations according to a power law function quantified using a method known as a detrended fluctuation analysis (DFA). The DFA mathematically describes the fluctuations at different time scales in the heartbeat signal and produces a scaling exponent that characterizes the degree of correlation between heartbeat intervals. If, for example, the scaling exponent, known as á, equaled 0.5, the interval fluctuations showed no correlation; if á equaled 1.5, the interval fluctuations were considered to be without control, exhibiting a so-called random walk property. If, however, á fell between 0.5 and 1.5, the interval fluctuations were considered to be organized and physiologically controlled. Interestingly, research studies have associated á values progressing toward 1.5 with pathological conditions, such as congestive heart failure.

When the team analyzed wake period data, they found a striking correlation: á values changed according to the internal body clock time. At 2 a.m., the value was 0.8; at 5 p.m., it was 1.0. However, at 10 a.m., the time of day found to have the greatest incidence of cardiac incidents, the team found the value was 1.2, edging toward the value linked with congestive heart failure. The team likewise found strong circadian rhythms whether data were considered only from the awake period or only from the sleep period.

"We are tempted to speculate that if the same circadian effect occurs in people with diseased hearts, then this may contribute to the day/night pattern of cardiac events," says BWH’s Shea. "But this was only a study on healthy subjects, and, therefore, we are a long way from making clinical recommendations. Further studies could, however, provide insight to the underlying cause of the disease -- and to therapies that might work better by being timed to the specific phases of the body clock."

Brigham and Women’s Hospital is a 735-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare System, an integrated health care delivery network. Internationally recognized as a leading academic health care institution, BWH is committed to excellence in patient care, medical research, and the training and education of health care professionals.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>