Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body’s biological clock found to affect cardiac rhythm patterns in healthy adults

21.12.2004


Statistical physics approach to analysis of heartbeat pattern uncovers link to circadian cycle



In a newly reported, first-ever finding, physicists from Boston University and physiologists from Boston’s Brigham and Women’s Hospital (BWH) have found that the body’s biological clock affects the patterns of heart-rate control in healthy individuals independent of sleep/wake cycle or other behavior influences. Their analysis of the heartbeat dynamics of the healthy individuals in the study showed significant circadian rhythm, including a notable response at the internal circadian phase corresponding to 10 a.m., the time of day most often linked to adverse cardiac events in individuals with heart disease.

The BU/BWH team reports its findings in the Dec. 28 issue of the Proceedings of the National Academy of Sciences. Sponsored by grants from the National Institutes of Health, the institutional teams were led by Plamen Ivanov, a research associate in BU’s Center for Polymer Studies, who undertook the analysis of the data, and Steven Shea, director of BWH’s medical chronobiology program and associate professor of medicine at Harvard Medical School, who conducted the experimental part of the research.


Cardiac disease is the leading cause of death in the United States, accounting for 29 percent of the deaths from the nation’s 10 leading causes (including homicides and accidents), according to the latest statistics (2001) available from the National Center for Health Statistics.

When designing their study of this deadly disease, the BU/BWH team drew on seemingly disparate findings in epidemiology, cardiology, circadian biology, biomedical engineering, and physics to construct an approach that would assess heartbeat fluctuations in healthy individuals at different circadian phases. In addition, they choose to analyze the data from these individuals using tools from statistical physics that describe relationships between the frequencies of large and small events. With these tools, the researchers hoped to find whether underlying patterns in the heartbeat data of the study participants were affected by the circadian phases.

For more than a decade, researchers at the Center for Polymer Studies have applied statistical physics methods to investigations of cardiac dynamics, probing for hidden patterns. Previous statistical evaluations of heartbeat fluctuations by Ivanov and others have shown that those of healthy subjects exhibit a self-similar structure over a range of time scales, that is, the fluctuations found in a window of 10 beats will be statistically similar to those found in a heartbeat interval of 100 beats and or one of 1000 beats.

"These studies have demonstrated that this self-similar structure in the temporal order of heartbeat fluctuations changes with certain behaviors, such as sleep or wake, rest or exercise," explains Ivanov. "Based on these observations, we hypothesized that these dynamic patterns will also change with circadian rhythm. This provided the impetus for the study design."

Epidemiological studies, too, have shown a pattern to events associated with heartbeat irregularities such as myocardial infarction, stroke, angina, arrhythmias and sudden cardiac death. These events have been found to have a strong 24-hour day/night pattern and, intriguingly, have been found to occur most often around 10 a.m.

Day/night patterns of disease severity are often associated with sleep/wake behavior but, the researchers hypothesized, they can also be linked to an internal body clock, the endogenous circadian pacemaker that controls much of our physiology, even when behaviors are unchanged. Body temperature, Shea notes, rises during the day and falls at night even when a person doesn’t sleep at night. The circadian cycle usually "resets" itself daily in response to certain external cues, most especially bright light, such as sunlight.

To remove any influence from the sleep/wake cycle, Shea and his team employed a "forced desynchrony" protocol on the five healthy volunteers who participated in the study. For 10 days, the participants lived in dimly lit rooms cut off from any outside stimuli or time cues. The researchers adjusted scheduled behaviors (sleeping periods, eating, and the like), gradually shifting the behavior patterns until the participants had a 28-hour day, about 19 hours awake and 9 hours asleep. This 28-hour sleep/wake schedule was sustained for seven "days," while core body temperatures, used to mark participants’ internal circadian phases, continued to oscillate with an approximate 24-hour period, indicating their sleep/wake cycles had been experimentally separated from their circadian cycles.

Using heartbeat data gathered from the participants throughout the 10-day desynchrony, Ivanov and BU team members Kun Hu and Zhi Chen, research assistants in physics, estimated correlations in the heartbeat fluctuations according to a power law function quantified using a method known as a detrended fluctuation analysis (DFA). The DFA mathematically describes the fluctuations at different time scales in the heartbeat signal and produces a scaling exponent that characterizes the degree of correlation between heartbeat intervals. If, for example, the scaling exponent, known as á, equaled 0.5, the interval fluctuations showed no correlation; if á equaled 1.5, the interval fluctuations were considered to be without control, exhibiting a so-called random walk property. If, however, á fell between 0.5 and 1.5, the interval fluctuations were considered to be organized and physiologically controlled. Interestingly, research studies have associated á values progressing toward 1.5 with pathological conditions, such as congestive heart failure.

When the team analyzed wake period data, they found a striking correlation: á values changed according to the internal body clock time. At 2 a.m., the value was 0.8; at 5 p.m., it was 1.0. However, at 10 a.m., the time of day found to have the greatest incidence of cardiac incidents, the team found the value was 1.2, edging toward the value linked with congestive heart failure. The team likewise found strong circadian rhythms whether data were considered only from the awake period or only from the sleep period.

"We are tempted to speculate that if the same circadian effect occurs in people with diseased hearts, then this may contribute to the day/night pattern of cardiac events," says BWH’s Shea. "But this was only a study on healthy subjects, and, therefore, we are a long way from making clinical recommendations. Further studies could, however, provide insight to the underlying cause of the disease -- and to therapies that might work better by being timed to the specific phases of the body clock."

Brigham and Women’s Hospital is a 735-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare System, an integrated health care delivery network. Internationally recognized as a leading academic health care institution, BWH is committed to excellence in patient care, medical research, and the training and education of health care professionals.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Health and Medicine:

nachricht A better way to measure the stiffness of cancer cells
01.03.2017 | Duke University

nachricht Humans have three times more brown body fat
01.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>