Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size of myocardial infarct measured using MRI

21.12.2004


In animal studies, researchers at Johns Hopkins have effectively used magnetic resonance imaging (MRI) to measure with 94 percent accuracy the size and amount of heart muscle damaged by a heart attack, known in medical terms as a myocardial infarct, or m.i., for short.



The Hopkins development, if confirmed in further pathology studies in humans, could standardize how physicians currently gauge the severity of a heart attack and a patient’s chances for recovery. A variety of methods are currently used to determine the size of an infarct by MRI, such as visual cues, but these estimates have been shown in previous studies to overestimate damage by an average of 11 percent.

The researchers, whose findings will be published in the Journal of the American College of Cardiology online Dec. 21, hope to apply this information for determining more accurate dosing regimens for stem cell therapies currently under development, in which upwards of 200 million stem cells are injected directly into the damaged heart muscle.


"The size of a heart attack matters for determining how well a patient will recover from the trauma. Current methods for measuring the size of an infarct and assessing how much damage was done are highly subjective and arbitrary," said senior study author and cardiologist João Lima, M.D., associate professor of medicine and radiology at The Johns Hopkins University School of Medicine and its Heart Institute. "Indeed, a person who has suffered damage to more than 30 percent of the left ventricle of the heart is twice as likely to die within a year from the injury than someone who has suffered less damage, and bigger infarcts often require more aggressive drug therapy or, in the most severe cases, surgery to repair heart tissue or prevent further damage."

The Hopkins team measured the size of an m.i. in 13 dogs using eight different methods for analyzing pictures taken by a standard MRI, ranging from visual cues to varying strengths of a computer model called full-width at half-maximum. This computer method calculates the amount of damaged tissue by comparing MRI signal strength between damaged and undamaged tissue. Damaged heart tissue is denser than undamaged tissue because the muscle structure has collapsed, and MRI can distinguish between tissues of varying density.

The results of each method were then compared against precise measurements at autopsy. The size of an m.i. was measured as a percentage of left ventricular volume. All measurements using MRI were taken within 24 hours after heart attack to simulate "real life" conditions.

Results showed that the full-width-at-half-maximum method was superior to all other methods, at 94 percent accuracy, when the least strict computer modeling formula was used, set at only one standard deviation between density of damaged and undamaged tissue. Other, stricter formulas in current use were accurate to 85 percent or less, if at all. When visual cues, the most commonly used method, were used, infarct size was measured with 69 percent accuracy.

"Our hope is that these results will help establish clear and effective guidelines for measuring the size of an m.i., and this will improve a physician’s ability to make an accurate prognosis," said lead study author and Hopkins cardiology research fellow Luciano Amado, M.D. "Cardiologists also need to accurately gauge the amount of damaged muscle as part of our preparations for future treatments that could possibly repair it, most notably stem cell therapies."

This six-month study was conducted between December 2001 and June 2002, with funding provided by the National Institutes of Health and Datascope Corp. Other Hopkins investigators involved in this research were Bernhard Gerber, M.D.; Gilberto Szarf, M.D.; Khurram Nasir, M.D., Ph.D.; and Dara Kraitchman, V.M.D., Ph.D., who helped design the study. Additional assistance was provided by Dan Rettmann, B.S.; and Sandeep Gupta, Ph.D., from GE Medical Systems, Waukeshas, Wis., who helped implement the computer software used for imaging analysis of infarct size by MRI.

MRI is a coiled, mechanical device for taking real-time, three-dimensional images inside the body, including organs, muscles and joints, without the need for invasive surgery. Unlike x-rays, there is no radiation involved. Instead, MRI uses radio-frequency waves and intense magnetic fields for obtaining images of the body’s interior, as atoms in varying tissues and organs respond differently when excited by the magnetic field. This creates patterns that can be reproduced on a display screen.

According to the latest statistics from the American Heart Association, in 2001, there were an estimated 565,000 new cases of heart attack in the United States, plus an additional 300,000 cases of recurrent heart attack. Almost 185,000 of all heart attacks were fatal. The AHA also estimated that 7,800,000 Americans had suffered at least one heart attack. People who have had a heart attack have a sudden death rate that is four to six times greater than in the general population. About two-thirds of heart attack patients do not make a complete recovery; however, 88 percent of those under age 65 are able to return to work.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>