Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing appears essential to combining antiangiogenesis and radiation therapy

21.12.2004


MGH study provides clues to best therapeutic schedule, cellular underpinnings of treatment



Although the earliest clinical trials of the cancer-fighting potential of antiangiogenesis drugs did not have the dramatic results that some hoped for, subsequent trials showed that combining agents that suppress blood-vessel growth with therapies that destroy cancer cells can improve patient survival. In the December issue of Cancer Cell, researchers from the Massachusetts General Hospital (MGH) describe how timing may be crucial to successfully combining angiogenesis inhibitors with radiation treatment and reveal more about exactly how these drugs work to fight cancer, which is somewhat different from earlier theories.

"The blood vessels that develop to supply nutrients to a tumor are not normal," says Rakesh Jain, PhD, director of the Steele Laboratory in the MGH Department of Radiation Therapy, the study’s senior author. "The vessels are leaky, dilated, disfigured, and do not evenly inflitrate the tumor, which can interfere with standard cancer therapies. Chemotherapy drugs are not distributed throughout the tumor, and the oxygen level is low, making tumors resistant to radiation therapy. It now appears that antiangiogenic therapy transiently improves a tumor’s blood supply and oxygenation, making it more vulnerable to radiation therapy."


Although some animal studies have suggested that combining antiangiogenesis and radiation therapy can slow tumor growth, in others the treatment appeared to spur tumor growth. The current investigation was designed to resolve these conflicting results and to improve understanding of the cellular and molecular underpinnings of antiangiogenesis treatment. The MGH researchers implanted human brain tumor tissue into mice that were then treated with various combinations of an angiogenesis inhibitor called DC101 and radiation therapy.

DC101 alone produced a minor delay in tumor growth, and radiation alone produced a more significant growth delay. But of five different schedules of combined treatment, only giving radiation from 4 to 6 days after initiation of DC101 therapy resulted in a synergistic effect that was greater than simply adding the effects of both treatments. Measurement of the oxygen levels within tumor tissue supported the theory that DC101 improves oxygen delivery to the tumor during the same time period, with hypoxia (oxygen starvation) almost eliminated on day 5 but returning by day 8.

To better understand the mechanism behind these changes, the researchers conducted several detailed analyses of the tumor tissue. They observed a shift toward more normal blood vessels that were smaller and less disfigured after DC101 treatment and also found that these vessels had been stabilized by the recruitment of pericytes – cells that normally help to support blood vessel walls. Mirroring the pattern of oxygen supply, pericyte coverage of blood vessels peaked around day 5 and then fell off by day 8.

The investigators also showed that greater pericyte coverage was the result of more pericytes being attracted to the tumor vessels, rather than the removal of pericyte-poor vessels as some researchers had assumed. Measurement of a factor known to be involved in pericyte recruitment found that its levels were temporarily increased after DC101 treatment. Examination of the effects of DC101 on vascular cells’ basement membrane, which becomes abnormally thick in tumors, indicated that the membrane was thinner during the day-2-to-day-5 time period and also showed that this improvement resulted from the increased activity of specific enzymes.

One crucial result of these findings is alleviation of the concern that reducing a tumor’s blood supply would actually worsen hypoxia and increase resistance to radiation therapy. "The success of this treatment approach depends on carefully scheduling when radiation is administered to take the greatest advantage of this window of vascular normalization," says Jain, who is Cook Professor of Tumor Biology at Harvard Medical School. His group plans further studies to determine how these results could be applied to treatment of cancer patients.

Additional authors of the current study are co-first authors Frank Winkler, MD, PhD, and Sergey Kozin, PhD, along with Ricky Tong, Sung-Suk Chae, PhD, Michael Booth, PhD, Igor Garkavtsev, MD, PhD, Lei Xu, MD, PhD, Dai Fukumura, MD, PhD, Emmanuelle di Tomaso, PhD, and Lance Munn, PhD, all of the Steele Laboratory at MGH; and Daniel Hicklin, PhD, of ImClone Systems Incorporated in New York.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>