Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing appears essential to combining antiangiogenesis and radiation therapy

21.12.2004


MGH study provides clues to best therapeutic schedule, cellular underpinnings of treatment



Although the earliest clinical trials of the cancer-fighting potential of antiangiogenesis drugs did not have the dramatic results that some hoped for, subsequent trials showed that combining agents that suppress blood-vessel growth with therapies that destroy cancer cells can improve patient survival. In the December issue of Cancer Cell, researchers from the Massachusetts General Hospital (MGH) describe how timing may be crucial to successfully combining angiogenesis inhibitors with radiation treatment and reveal more about exactly how these drugs work to fight cancer, which is somewhat different from earlier theories.

"The blood vessels that develop to supply nutrients to a tumor are not normal," says Rakesh Jain, PhD, director of the Steele Laboratory in the MGH Department of Radiation Therapy, the study’s senior author. "The vessels are leaky, dilated, disfigured, and do not evenly inflitrate the tumor, which can interfere with standard cancer therapies. Chemotherapy drugs are not distributed throughout the tumor, and the oxygen level is low, making tumors resistant to radiation therapy. It now appears that antiangiogenic therapy transiently improves a tumor’s blood supply and oxygenation, making it more vulnerable to radiation therapy."


Although some animal studies have suggested that combining antiangiogenesis and radiation therapy can slow tumor growth, in others the treatment appeared to spur tumor growth. The current investigation was designed to resolve these conflicting results and to improve understanding of the cellular and molecular underpinnings of antiangiogenesis treatment. The MGH researchers implanted human brain tumor tissue into mice that were then treated with various combinations of an angiogenesis inhibitor called DC101 and radiation therapy.

DC101 alone produced a minor delay in tumor growth, and radiation alone produced a more significant growth delay. But of five different schedules of combined treatment, only giving radiation from 4 to 6 days after initiation of DC101 therapy resulted in a synergistic effect that was greater than simply adding the effects of both treatments. Measurement of the oxygen levels within tumor tissue supported the theory that DC101 improves oxygen delivery to the tumor during the same time period, with hypoxia (oxygen starvation) almost eliminated on day 5 but returning by day 8.

To better understand the mechanism behind these changes, the researchers conducted several detailed analyses of the tumor tissue. They observed a shift toward more normal blood vessels that were smaller and less disfigured after DC101 treatment and also found that these vessels had been stabilized by the recruitment of pericytes – cells that normally help to support blood vessel walls. Mirroring the pattern of oxygen supply, pericyte coverage of blood vessels peaked around day 5 and then fell off by day 8.

The investigators also showed that greater pericyte coverage was the result of more pericytes being attracted to the tumor vessels, rather than the removal of pericyte-poor vessels as some researchers had assumed. Measurement of a factor known to be involved in pericyte recruitment found that its levels were temporarily increased after DC101 treatment. Examination of the effects of DC101 on vascular cells’ basement membrane, which becomes abnormally thick in tumors, indicated that the membrane was thinner during the day-2-to-day-5 time period and also showed that this improvement resulted from the increased activity of specific enzymes.

One crucial result of these findings is alleviation of the concern that reducing a tumor’s blood supply would actually worsen hypoxia and increase resistance to radiation therapy. "The success of this treatment approach depends on carefully scheduling when radiation is administered to take the greatest advantage of this window of vascular normalization," says Jain, who is Cook Professor of Tumor Biology at Harvard Medical School. His group plans further studies to determine how these results could be applied to treatment of cancer patients.

Additional authors of the current study are co-first authors Frank Winkler, MD, PhD, and Sergey Kozin, PhD, along with Ricky Tong, Sung-Suk Chae, PhD, Michael Booth, PhD, Igor Garkavtsev, MD, PhD, Lei Xu, MD, PhD, Dai Fukumura, MD, PhD, Emmanuelle di Tomaso, PhD, and Lance Munn, PhD, all of the Steele Laboratory at MGH; and Daniel Hicklin, PhD, of ImClone Systems Incorporated in New York.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>