Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model simulates dynamics of heart rhythm disorders

17.12.2004


Dutch researcher Kirsten ten Tusscher has developed a model that can simulate the electrical behaviour of the heart during heart rhythm disorders. One of the things her model revealed is that the electrical activity of the heart during a rhythm disorder is much less chaotic than was originally thought.

Kirsten ten Tusscher first of all made a model that described the electrical behaviour of individual human heart muscle cells. She demonstrated that the behaviour of this model corresponded well with results from experiments on human heart cells. The source code of this cell model is freely available on Internet.

The researcher then used her new model to simulate the behaviour of 13.5 million individual grid points, which together form the anatomy of a human heart. As the model is extremely large and requires a considerable amount of calculating power, she used the TERAS supercomputer of the SARA and a mini-Beowulf cluster in her own department. With this she studied the behaviour of electrical wave patterns during certain rhythm disorders in the human heart.



Heart rhythm disorders are abnormalities in the timing, sequence and coordination of how the heart muscle contracts. These vary in seriousness from palpitations though to disorders that are fatal within minutes. Heart rhythm disorders are one of the most frequent causes of death.

Ten Tusscher focused on two rhythm disorders. In ventricular tachycardia, the heart ventricles contract more frequently than normal. Less blood flows out of the ventricles and the supply of oxygen to the body is reduced. In ventricular fibrillation, the ventricles no longer contract coherently. Due to the reduced pumping action, almost no blood leaves the ventricles. As a result, the body hardly receives any more oxygen and death ensues within minutes.

Spiral-shaped electrical waves rotating at a high frequency can result in a more rapid contraction of the heart. Ventricular fibrillation is caused by spiral waves degenerating into a chaotic pattern of many small waves. Ten Tusscher demonstrated that in a healthy heart, stable three-dimensional spiral waves arise after the administration of several large electrical impulses. Under modified model conditions, the same electrical impulses were found to result in degenerating spiral waves that lead to fatal fibrillation.

Furthermore, the theoretical biologist discovered that during fibrillation, only about six of these spiral waves are present in the heart, whereas it had previously been assumed that this number lay somewhere between 40 and 110. This means that the wave dynamics during fibrillation are much less chaotic than was previously thought.

Kirsten ten Tusscher’s project was funded by the Netherlands Organisation for Scientific Research (NWO) and formed part of the NWO programme ’Non-Linear Systems’. NWO sponsored a mini-symposium in conjunction with Kirsten ten Tusscher’s defence of her doctoral thesis.

Dr Kirsten ten Tusscher | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_66ND5L_Eng
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>