Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Model simulates dynamics of heart rhythm disorders


Dutch researcher Kirsten ten Tusscher has developed a model that can simulate the electrical behaviour of the heart during heart rhythm disorders. One of the things her model revealed is that the electrical activity of the heart during a rhythm disorder is much less chaotic than was originally thought.

Kirsten ten Tusscher first of all made a model that described the electrical behaviour of individual human heart muscle cells. She demonstrated that the behaviour of this model corresponded well with results from experiments on human heart cells. The source code of this cell model is freely available on Internet.

The researcher then used her new model to simulate the behaviour of 13.5 million individual grid points, which together form the anatomy of a human heart. As the model is extremely large and requires a considerable amount of calculating power, she used the TERAS supercomputer of the SARA and a mini-Beowulf cluster in her own department. With this she studied the behaviour of electrical wave patterns during certain rhythm disorders in the human heart.

Heart rhythm disorders are abnormalities in the timing, sequence and coordination of how the heart muscle contracts. These vary in seriousness from palpitations though to disorders that are fatal within minutes. Heart rhythm disorders are one of the most frequent causes of death.

Ten Tusscher focused on two rhythm disorders. In ventricular tachycardia, the heart ventricles contract more frequently than normal. Less blood flows out of the ventricles and the supply of oxygen to the body is reduced. In ventricular fibrillation, the ventricles no longer contract coherently. Due to the reduced pumping action, almost no blood leaves the ventricles. As a result, the body hardly receives any more oxygen and death ensues within minutes.

Spiral-shaped electrical waves rotating at a high frequency can result in a more rapid contraction of the heart. Ventricular fibrillation is caused by spiral waves degenerating into a chaotic pattern of many small waves. Ten Tusscher demonstrated that in a healthy heart, stable three-dimensional spiral waves arise after the administration of several large electrical impulses. Under modified model conditions, the same electrical impulses were found to result in degenerating spiral waves that lead to fatal fibrillation.

Furthermore, the theoretical biologist discovered that during fibrillation, only about six of these spiral waves are present in the heart, whereas it had previously been assumed that this number lay somewhere between 40 and 110. This means that the wave dynamics during fibrillation are much less chaotic than was previously thought.

Kirsten ten Tusscher’s project was funded by the Netherlands Organisation for Scientific Research (NWO) and formed part of the NWO programme ’Non-Linear Systems’. NWO sponsored a mini-symposium in conjunction with Kirsten ten Tusscher’s defence of her doctoral thesis.

Dr Kirsten ten Tusscher | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>