Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model simulates dynamics of heart rhythm disorders

17.12.2004


Dutch researcher Kirsten ten Tusscher has developed a model that can simulate the electrical behaviour of the heart during heart rhythm disorders. One of the things her model revealed is that the electrical activity of the heart during a rhythm disorder is much less chaotic than was originally thought.

Kirsten ten Tusscher first of all made a model that described the electrical behaviour of individual human heart muscle cells. She demonstrated that the behaviour of this model corresponded well with results from experiments on human heart cells. The source code of this cell model is freely available on Internet.

The researcher then used her new model to simulate the behaviour of 13.5 million individual grid points, which together form the anatomy of a human heart. As the model is extremely large and requires a considerable amount of calculating power, she used the TERAS supercomputer of the SARA and a mini-Beowulf cluster in her own department. With this she studied the behaviour of electrical wave patterns during certain rhythm disorders in the human heart.



Heart rhythm disorders are abnormalities in the timing, sequence and coordination of how the heart muscle contracts. These vary in seriousness from palpitations though to disorders that are fatal within minutes. Heart rhythm disorders are one of the most frequent causes of death.

Ten Tusscher focused on two rhythm disorders. In ventricular tachycardia, the heart ventricles contract more frequently than normal. Less blood flows out of the ventricles and the supply of oxygen to the body is reduced. In ventricular fibrillation, the ventricles no longer contract coherently. Due to the reduced pumping action, almost no blood leaves the ventricles. As a result, the body hardly receives any more oxygen and death ensues within minutes.

Spiral-shaped electrical waves rotating at a high frequency can result in a more rapid contraction of the heart. Ventricular fibrillation is caused by spiral waves degenerating into a chaotic pattern of many small waves. Ten Tusscher demonstrated that in a healthy heart, stable three-dimensional spiral waves arise after the administration of several large electrical impulses. Under modified model conditions, the same electrical impulses were found to result in degenerating spiral waves that lead to fatal fibrillation.

Furthermore, the theoretical biologist discovered that during fibrillation, only about six of these spiral waves are present in the heart, whereas it had previously been assumed that this number lay somewhere between 40 and 110. This means that the wave dynamics during fibrillation are much less chaotic than was previously thought.

Kirsten ten Tusscher’s project was funded by the Netherlands Organisation for Scientific Research (NWO) and formed part of the NWO programme ’Non-Linear Systems’. NWO sponsored a mini-symposium in conjunction with Kirsten ten Tusscher’s defence of her doctoral thesis.

Dr Kirsten ten Tusscher | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_66ND5L_Eng
http://www.nwo.nl

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>