Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of first demethylase molecule, a long-sought gene regulator

17.12.2004


Could be target for cancer therapeutics

MA-Researchers have discovered an enzyme that plays an important role in controlling which genes will be turned on or off at any given time in a cell. The novel protein helps orchestrate the patterns of gene activity that determine normal cell function. Their disruption can lead to cancer.

The elusive enzyme, whose presence in cells was suspected but not proven for decades, came to light in the laboratory of Yang Shi, HMS professor of pathology, and is described in a study published in the Dec. 16 online edition of Cell and appearing in the Dec. 29 print edition.



"This discovery will have a huge impact on the field of gene regulation," said Fred Winston, an HMS professor of genetics who was not involved with the work. "Shi and his colleagues discovered something that many people didn’t believe existed."

The enzyme, a histone demethylase, removes methyl groups appended to histone proteins that bind DNA and help regulate gene activity. "Previously, people thought that histone methylation was stable and irreversible," said Shi. "The fact that we’ve identified a demethylase suggests a more dynamic process of gene regulation via methylation of histones. The idea of yin and yang is universal in biology; our results show that histone methylation is no different."

In the cell, yarnlike strands of DNA wrap around protein scaffolds built of histones. The histones organize DNA into a packed structure that can fit into the nucleus, and the packing determines whether the genes are available to be read or not. Acetyl, methyl, or other chemical tags appended to the histones determine how the histones and DNA interact to form a chromatin structure that either promotes gene activity or represses it.

Some histone tags, particularly acetyl groups, are known to be easily added and removed, helping genes to flick on and off when needed. But the addition of methyl groups was considered a one-way process that could only be reversed by the destruction of histones and their replacement with new ones. Part of the reason scientist believed this was that no one had isolated a demethylase, despite an active search.

The Shi lab was not among those in the hunt, but they stumbled onto the demethylase while probing the function of a new gene repressor protein. Postdoctoral fellow Yujiang Shi had exhausted the likely possibilities for how the mystery protein worked to suppress gene activity, so one day he tried an unlikely experiment. He had the purified protein in a test tube and decided to feed it methylated histones. His finding, that the enzyme could efficiently chew off the methyl group, leaving behind intact, unmodified histone left the postdoc Shi shaking with excitement. "Forty years ago some scientists speculated that histone demethylases existed," he said. "At first, I thought it was impossible that this protein was it." After reproducing the results using several different biochemical techniques, he began to feel comfortable that they had found the first demethylase.

Their enzyme didn’t remove just any methyl group from histone. Instead, it removed a very specific methyl found on lysine 4 (K4) of histone 3 (H3). H3K4 methylation is associated with active transcription, so its removal would be consistent with the gene repression function they had identified.

Now that the first demethylase has been recognized, researchers will certainly find more. "This cannot be the only demethylase," said Shi.

Genes turning on at the wrong time or in the wrong place is a hallmark of cancer cells. In some tumors, high levels of methylation of H3K4 seem to play a role in activating genes that drive abnormal cell growth. The discovery of this H3K4 demethylase suggests a way to counterbalance this progrowth signal in some tumors. And if previous experience with histone deacetylases is any guide, the demethylases could one day be targets for cancer therapeutics.

"These findings will impact every walk of biology," said David Allis of Rockefeller University, a leader in studying the regulation and biological roles of histone tags. "Histone modifications are highly dynamic on-off switches that the cell throws a lot. These modifications affect everything DNA does, and getting the enzyme means you’ve got one upstream point of regulation. This will open up a wealth of new experiments."

John Lacey | EurekAlert!
Further information:
http://hms.harvard.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>