Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of first demethylase molecule, a long-sought gene regulator

17.12.2004


Could be target for cancer therapeutics

MA-Researchers have discovered an enzyme that plays an important role in controlling which genes will be turned on or off at any given time in a cell. The novel protein helps orchestrate the patterns of gene activity that determine normal cell function. Their disruption can lead to cancer.

The elusive enzyme, whose presence in cells was suspected but not proven for decades, came to light in the laboratory of Yang Shi, HMS professor of pathology, and is described in a study published in the Dec. 16 online edition of Cell and appearing in the Dec. 29 print edition.



"This discovery will have a huge impact on the field of gene regulation," said Fred Winston, an HMS professor of genetics who was not involved with the work. "Shi and his colleagues discovered something that many people didn’t believe existed."

The enzyme, a histone demethylase, removes methyl groups appended to histone proteins that bind DNA and help regulate gene activity. "Previously, people thought that histone methylation was stable and irreversible," said Shi. "The fact that we’ve identified a demethylase suggests a more dynamic process of gene regulation via methylation of histones. The idea of yin and yang is universal in biology; our results show that histone methylation is no different."

In the cell, yarnlike strands of DNA wrap around protein scaffolds built of histones. The histones organize DNA into a packed structure that can fit into the nucleus, and the packing determines whether the genes are available to be read or not. Acetyl, methyl, or other chemical tags appended to the histones determine how the histones and DNA interact to form a chromatin structure that either promotes gene activity or represses it.

Some histone tags, particularly acetyl groups, are known to be easily added and removed, helping genes to flick on and off when needed. But the addition of methyl groups was considered a one-way process that could only be reversed by the destruction of histones and their replacement with new ones. Part of the reason scientist believed this was that no one had isolated a demethylase, despite an active search.

The Shi lab was not among those in the hunt, but they stumbled onto the demethylase while probing the function of a new gene repressor protein. Postdoctoral fellow Yujiang Shi had exhausted the likely possibilities for how the mystery protein worked to suppress gene activity, so one day he tried an unlikely experiment. He had the purified protein in a test tube and decided to feed it methylated histones. His finding, that the enzyme could efficiently chew off the methyl group, leaving behind intact, unmodified histone left the postdoc Shi shaking with excitement. "Forty years ago some scientists speculated that histone demethylases existed," he said. "At first, I thought it was impossible that this protein was it." After reproducing the results using several different biochemical techniques, he began to feel comfortable that they had found the first demethylase.

Their enzyme didn’t remove just any methyl group from histone. Instead, it removed a very specific methyl found on lysine 4 (K4) of histone 3 (H3). H3K4 methylation is associated with active transcription, so its removal would be consistent with the gene repression function they had identified.

Now that the first demethylase has been recognized, researchers will certainly find more. "This cannot be the only demethylase," said Shi.

Genes turning on at the wrong time or in the wrong place is a hallmark of cancer cells. In some tumors, high levels of methylation of H3K4 seem to play a role in activating genes that drive abnormal cell growth. The discovery of this H3K4 demethylase suggests a way to counterbalance this progrowth signal in some tumors. And if previous experience with histone deacetylases is any guide, the demethylases could one day be targets for cancer therapeutics.

"These findings will impact every walk of biology," said David Allis of Rockefeller University, a leader in studying the regulation and biological roles of histone tags. "Histone modifications are highly dynamic on-off switches that the cell throws a lot. These modifications affect everything DNA does, and getting the enzyme means you’ve got one upstream point of regulation. This will open up a wealth of new experiments."

John Lacey | EurekAlert!
Further information:
http://hms.harvard.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>