Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of first demethylase molecule, a long-sought gene regulator

17.12.2004


Could be target for cancer therapeutics

MA-Researchers have discovered an enzyme that plays an important role in controlling which genes will be turned on or off at any given time in a cell. The novel protein helps orchestrate the patterns of gene activity that determine normal cell function. Their disruption can lead to cancer.

The elusive enzyme, whose presence in cells was suspected but not proven for decades, came to light in the laboratory of Yang Shi, HMS professor of pathology, and is described in a study published in the Dec. 16 online edition of Cell and appearing in the Dec. 29 print edition.



"This discovery will have a huge impact on the field of gene regulation," said Fred Winston, an HMS professor of genetics who was not involved with the work. "Shi and his colleagues discovered something that many people didn’t believe existed."

The enzyme, a histone demethylase, removes methyl groups appended to histone proteins that bind DNA and help regulate gene activity. "Previously, people thought that histone methylation was stable and irreversible," said Shi. "The fact that we’ve identified a demethylase suggests a more dynamic process of gene regulation via methylation of histones. The idea of yin and yang is universal in biology; our results show that histone methylation is no different."

In the cell, yarnlike strands of DNA wrap around protein scaffolds built of histones. The histones organize DNA into a packed structure that can fit into the nucleus, and the packing determines whether the genes are available to be read or not. Acetyl, methyl, or other chemical tags appended to the histones determine how the histones and DNA interact to form a chromatin structure that either promotes gene activity or represses it.

Some histone tags, particularly acetyl groups, are known to be easily added and removed, helping genes to flick on and off when needed. But the addition of methyl groups was considered a one-way process that could only be reversed by the destruction of histones and their replacement with new ones. Part of the reason scientist believed this was that no one had isolated a demethylase, despite an active search.

The Shi lab was not among those in the hunt, but they stumbled onto the demethylase while probing the function of a new gene repressor protein. Postdoctoral fellow Yujiang Shi had exhausted the likely possibilities for how the mystery protein worked to suppress gene activity, so one day he tried an unlikely experiment. He had the purified protein in a test tube and decided to feed it methylated histones. His finding, that the enzyme could efficiently chew off the methyl group, leaving behind intact, unmodified histone left the postdoc Shi shaking with excitement. "Forty years ago some scientists speculated that histone demethylases existed," he said. "At first, I thought it was impossible that this protein was it." After reproducing the results using several different biochemical techniques, he began to feel comfortable that they had found the first demethylase.

Their enzyme didn’t remove just any methyl group from histone. Instead, it removed a very specific methyl found on lysine 4 (K4) of histone 3 (H3). H3K4 methylation is associated with active transcription, so its removal would be consistent with the gene repression function they had identified.

Now that the first demethylase has been recognized, researchers will certainly find more. "This cannot be the only demethylase," said Shi.

Genes turning on at the wrong time or in the wrong place is a hallmark of cancer cells. In some tumors, high levels of methylation of H3K4 seem to play a role in activating genes that drive abnormal cell growth. The discovery of this H3K4 demethylase suggests a way to counterbalance this progrowth signal in some tumors. And if previous experience with histone deacetylases is any guide, the demethylases could one day be targets for cancer therapeutics.

"These findings will impact every walk of biology," said David Allis of Rockefeller University, a leader in studying the regulation and biological roles of histone tags. "Histone modifications are highly dynamic on-off switches that the cell throws a lot. These modifications affect everything DNA does, and getting the enzyme means you’ve got one upstream point of regulation. This will open up a wealth of new experiments."

John Lacey | EurekAlert!
Further information:
http://hms.harvard.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>