Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of first demethylase molecule, a long-sought gene regulator

17.12.2004


Could be target for cancer therapeutics

MA-Researchers have discovered an enzyme that plays an important role in controlling which genes will be turned on or off at any given time in a cell. The novel protein helps orchestrate the patterns of gene activity that determine normal cell function. Their disruption can lead to cancer.

The elusive enzyme, whose presence in cells was suspected but not proven for decades, came to light in the laboratory of Yang Shi, HMS professor of pathology, and is described in a study published in the Dec. 16 online edition of Cell and appearing in the Dec. 29 print edition.



"This discovery will have a huge impact on the field of gene regulation," said Fred Winston, an HMS professor of genetics who was not involved with the work. "Shi and his colleagues discovered something that many people didn’t believe existed."

The enzyme, a histone demethylase, removes methyl groups appended to histone proteins that bind DNA and help regulate gene activity. "Previously, people thought that histone methylation was stable and irreversible," said Shi. "The fact that we’ve identified a demethylase suggests a more dynamic process of gene regulation via methylation of histones. The idea of yin and yang is universal in biology; our results show that histone methylation is no different."

In the cell, yarnlike strands of DNA wrap around protein scaffolds built of histones. The histones organize DNA into a packed structure that can fit into the nucleus, and the packing determines whether the genes are available to be read or not. Acetyl, methyl, or other chemical tags appended to the histones determine how the histones and DNA interact to form a chromatin structure that either promotes gene activity or represses it.

Some histone tags, particularly acetyl groups, are known to be easily added and removed, helping genes to flick on and off when needed. But the addition of methyl groups was considered a one-way process that could only be reversed by the destruction of histones and their replacement with new ones. Part of the reason scientist believed this was that no one had isolated a demethylase, despite an active search.

The Shi lab was not among those in the hunt, but they stumbled onto the demethylase while probing the function of a new gene repressor protein. Postdoctoral fellow Yujiang Shi had exhausted the likely possibilities for how the mystery protein worked to suppress gene activity, so one day he tried an unlikely experiment. He had the purified protein in a test tube and decided to feed it methylated histones. His finding, that the enzyme could efficiently chew off the methyl group, leaving behind intact, unmodified histone left the postdoc Shi shaking with excitement. "Forty years ago some scientists speculated that histone demethylases existed," he said. "At first, I thought it was impossible that this protein was it." After reproducing the results using several different biochemical techniques, he began to feel comfortable that they had found the first demethylase.

Their enzyme didn’t remove just any methyl group from histone. Instead, it removed a very specific methyl found on lysine 4 (K4) of histone 3 (H3). H3K4 methylation is associated with active transcription, so its removal would be consistent with the gene repression function they had identified.

Now that the first demethylase has been recognized, researchers will certainly find more. "This cannot be the only demethylase," said Shi.

Genes turning on at the wrong time or in the wrong place is a hallmark of cancer cells. In some tumors, high levels of methylation of H3K4 seem to play a role in activating genes that drive abnormal cell growth. The discovery of this H3K4 demethylase suggests a way to counterbalance this progrowth signal in some tumors. And if previous experience with histone deacetylases is any guide, the demethylases could one day be targets for cancer therapeutics.

"These findings will impact every walk of biology," said David Allis of Rockefeller University, a leader in studying the regulation and biological roles of histone tags. "Histone modifications are highly dynamic on-off switches that the cell throws a lot. These modifications affect everything DNA does, and getting the enzyme means you’ve got one upstream point of regulation. This will open up a wealth of new experiments."

John Lacey | EurekAlert!
Further information:
http://hms.harvard.edu/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>