Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clue to nerve growth may help regeneration efforts

17.12.2004


Johns Hopkins scientists have discovered how one family of proteins repels growing nerves and keeps them properly on track during development. The finding, described in the Dec. 16 issue of Neuron, might provide a chance to overcome the proteins’ later role in preventing regrowth of injured nerves, the researchers say.

The proteins, known as chondroitin sulfate proteoglycans (CSPGs), have long been known to prevent nerve regeneration after injury by recruiting a stew of other proteins and agents, but exactly what part of the mix keeps nerves from regrowing is unknown.

In studies of nerve growth in developing rats, the Hopkins scientists have linked CSPGs’ no-growth effects to a protein called semaphorin 5A. The scientists, including David Kantor, an M.D./Ph.D. candidate, found that when CSPGs bind to semaphorin 5A, growing nerves are stopped in their tracks. Blocking this particular interaction freed the nerves to continue growing.



"CSPGs are a critical obstacle to nerve regeneration after injury, and without details about what’s really happening, it’s impossible to rationally intervene," says study leader Alex Kolodkin, Ph.D., professor of neuroscience in Johns Hopkins’ Institute for Basic Biomedical Sciences. "We studied nerve growth, rather than re-growth, but our work provides a starting point for identifying more partners of CSPGs and for finding targets to try to counter these proteins’ effects in nerve regeneration."

Semaphorins, including 5A, are a family of proteins that help direct growing nerves as they extend toward their eventual targets, largely by keeping nerves out of places they shouldn’t be.

"These proteins are classic ’guidance cues’ for nerves. There’s nothing particularly fancy about what they do -- they bind to spots on the tip of the growing nerve, and the nerve doesn’t continue going in that direction," says Kolodkin, whose lab studies semaphorins. "Scientists studying CSPGs’ effects haven’t really been considering classic guidance cues as CSPGs’ key partners, but our study suggests they just might be."

When a nerve is damaged, large amounts of CSPG proteins accumulate at the site of injury. These proteins, in turn, draw in a host of other factors, including semaphorins. Others have shown that without CSPGs, damaged nerves growing in a dish can regenerate, a finding that suggests blocking CSPGs might permit the same in animals.

In experiments in laboratory dishes, Kantor simulated a particular step in the brain development of developing rats. During this step, specific nerves begin connecting between what will eventually be two sections of the brain.

Because the accurate extension of these nerves requires semaphorin 5A, Kantor was able to identify key molecules that interact with it. He found that CSPGs bind semaphorin 5A to prevent nerves from extending across a no-man’s-land between the nerves’ simulated origin and target. Preventing this interaction by adding an enzyme that destroys only CSPGs allowed nerves to penetrate that space when they shouldn’t have.

Kantor also found that semaphorin 5A helps keep the bundle of growing nerve fibers together by interacting with a different family of proteins, those known as heparan sulfate proteoglygans (HSPGs). Other semaphorins also are known to have the apparent paradox of both encouraging growth and restricting it.

"Semaphorins’ dual abilities likely stem in part from interactions with different partners, as we’ve seen here," says Kolodkin, whose team is now studying how semaphorin 5A’s signal and binding partners change, and whether it also partners with CSPGs to suppress regeneration. "During development, the available partners change with time and place, helping a limited number of guidance cues accomplish a very complex task."

The Hopkins researchers were funded by the Johns Hopkins Medical Scientist Training Program, the Christopher Reeve Paralysis Foundation, and the National Institute of Neurological Disorders and Stroke.

Authors on the paper are Kantor, Kolodkin and Katherine Peer of Johns Hopkins; Onanong Chivatakarn and Roman Giger of the University of Rochester, NY; Stephen Oster and David Sretavan, University of California, San Francisco; Masaru Inatani and Yu Yamaguchi, The Burnham Institute, La Jolla, Calif.; and Michael Hansen and John Flanagan, Harvard Medical School.

Joanna Downer | EurekAlert!
Further information:
http://www.neuron.org/
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>