Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clue to nerve growth may help regeneration efforts

17.12.2004


Johns Hopkins scientists have discovered how one family of proteins repels growing nerves and keeps them properly on track during development. The finding, described in the Dec. 16 issue of Neuron, might provide a chance to overcome the proteins’ later role in preventing regrowth of injured nerves, the researchers say.

The proteins, known as chondroitin sulfate proteoglycans (CSPGs), have long been known to prevent nerve regeneration after injury by recruiting a stew of other proteins and agents, but exactly what part of the mix keeps nerves from regrowing is unknown.

In studies of nerve growth in developing rats, the Hopkins scientists have linked CSPGs’ no-growth effects to a protein called semaphorin 5A. The scientists, including David Kantor, an M.D./Ph.D. candidate, found that when CSPGs bind to semaphorin 5A, growing nerves are stopped in their tracks. Blocking this particular interaction freed the nerves to continue growing.



"CSPGs are a critical obstacle to nerve regeneration after injury, and without details about what’s really happening, it’s impossible to rationally intervene," says study leader Alex Kolodkin, Ph.D., professor of neuroscience in Johns Hopkins’ Institute for Basic Biomedical Sciences. "We studied nerve growth, rather than re-growth, but our work provides a starting point for identifying more partners of CSPGs and for finding targets to try to counter these proteins’ effects in nerve regeneration."

Semaphorins, including 5A, are a family of proteins that help direct growing nerves as they extend toward their eventual targets, largely by keeping nerves out of places they shouldn’t be.

"These proteins are classic ’guidance cues’ for nerves. There’s nothing particularly fancy about what they do -- they bind to spots on the tip of the growing nerve, and the nerve doesn’t continue going in that direction," says Kolodkin, whose lab studies semaphorins. "Scientists studying CSPGs’ effects haven’t really been considering classic guidance cues as CSPGs’ key partners, but our study suggests they just might be."

When a nerve is damaged, large amounts of CSPG proteins accumulate at the site of injury. These proteins, in turn, draw in a host of other factors, including semaphorins. Others have shown that without CSPGs, damaged nerves growing in a dish can regenerate, a finding that suggests blocking CSPGs might permit the same in animals.

In experiments in laboratory dishes, Kantor simulated a particular step in the brain development of developing rats. During this step, specific nerves begin connecting between what will eventually be two sections of the brain.

Because the accurate extension of these nerves requires semaphorin 5A, Kantor was able to identify key molecules that interact with it. He found that CSPGs bind semaphorin 5A to prevent nerves from extending across a no-man’s-land between the nerves’ simulated origin and target. Preventing this interaction by adding an enzyme that destroys only CSPGs allowed nerves to penetrate that space when they shouldn’t have.

Kantor also found that semaphorin 5A helps keep the bundle of growing nerve fibers together by interacting with a different family of proteins, those known as heparan sulfate proteoglygans (HSPGs). Other semaphorins also are known to have the apparent paradox of both encouraging growth and restricting it.

"Semaphorins’ dual abilities likely stem in part from interactions with different partners, as we’ve seen here," says Kolodkin, whose team is now studying how semaphorin 5A’s signal and binding partners change, and whether it also partners with CSPGs to suppress regeneration. "During development, the available partners change with time and place, helping a limited number of guidance cues accomplish a very complex task."

The Hopkins researchers were funded by the Johns Hopkins Medical Scientist Training Program, the Christopher Reeve Paralysis Foundation, and the National Institute of Neurological Disorders and Stroke.

Authors on the paper are Kantor, Kolodkin and Katherine Peer of Johns Hopkins; Onanong Chivatakarn and Roman Giger of the University of Rochester, NY; Stephen Oster and David Sretavan, University of California, San Francisco; Masaru Inatani and Yu Yamaguchi, The Burnham Institute, La Jolla, Calif.; and Michael Hansen and John Flanagan, Harvard Medical School.

Joanna Downer | EurekAlert!
Further information:
http://www.neuron.org/
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>