Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New effects of an antihistaminic against cerebral injury

17.12.2004


Ranitidine could become new treatment for cerebral ischemia

Ranitidine, a widely used substance used as an antihistaminic drug against gastric ulcers, may become a new treatment for cerebral ischemia caused by craneoencephalic infarcts or traumatisms, the third leading cause of deaths in industrialised countries. In experiments with a model of cerebral ischemia using rats, a team from the Institute of Neurosciences of the Universitat Autònoma de Barcelona (Spain) has observed how the presence of ranitidine reduces neuronal death by a quarter. The substance reaches its maximum effect six hours after the lesion has occurred, which will facilitate treatment in real cases with humans.

The scientists of the Institute of Neurosciences at the UAB have studied ranitidine’s effects on an experimental model using neurons from rats’ brains. The cells underwent a lack of oxygen and glucose analogous to that which they suffer, within the brain, when there is a lack of blood flow (what happens when there is a cerebral ischemia) caused by an infarct or a traumatism. When a lesion of this type occurs, the cells either die directly or, in many cases, they becomes victims of a slow programmed death called apoptosis, a kind of "suicide" at a cellular level.



The researchers observed that ranitidine acts preferentially on the neurons that are in the process of apopotosis, and conclusively reduces the percentage of cells that die. Even when treatment is initiated six hours after the lack of oxygen and glucose, and maintaining it over a 24-hour period, this substance reduces by a quarter the number cells that die with respect to the number of cells that die when there is no treatment.

The fact that in the laboratory studies ranitidine’s activity was optimal when administered hours after the lack of oxygen and glucose is highly important when looking towards a future use as treatment for cerebral ischemia in humans, in that, obviously, therapeutic treatments always take place after the time of the infarct or traumatism.

The authors of the research, recently published in Stroke magazine, affirm that the most immediate challenge is to verify the efficacy of the substance in in vivo experimental models of cerebral ischemia, because they have obtained good preliminar results with alive rats. Ranitidine is already widely used as a drug for treating gastric ulcers, which will accelerate the step towards clinical trials on humans. In fact, the researchers are already designing these clinical trails with associated universitary hospitals (Hospital Vall Hebron and Hospital de Sant Pau, in Barcelona).

The researchers also point out the need to work on designing new chemical compounds based on ranitidine that facilitate its administration, because the substance has difficulty moving from the blood flow to the brain. That is not an impediment in hospital interventions, as it can be administered directly to the brain, but to facilitate treatment it will be necessary to find a way in which the drug can be administered by oral route.

The following people participated in the research: Cristina Malagelada, Josefa Sabrià, José Rodríguez, Xavier Xifró and Nahuai Badiola. They are all researchers at the Institute of Neurosciences and of the Biochemical Unit (Faculty of Medicine) of the Department of Biochemistry and of Molecular Biology at the UAB.

Octavi López Coronado | EurekAlert!
Further information:
http://www.uab.es

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>