Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New effects of an antihistaminic against cerebral injury

17.12.2004


Ranitidine could become new treatment for cerebral ischemia

Ranitidine, a widely used substance used as an antihistaminic drug against gastric ulcers, may become a new treatment for cerebral ischemia caused by craneoencephalic infarcts or traumatisms, the third leading cause of deaths in industrialised countries. In experiments with a model of cerebral ischemia using rats, a team from the Institute of Neurosciences of the Universitat Autònoma de Barcelona (Spain) has observed how the presence of ranitidine reduces neuronal death by a quarter. The substance reaches its maximum effect six hours after the lesion has occurred, which will facilitate treatment in real cases with humans.

The scientists of the Institute of Neurosciences at the UAB have studied ranitidine’s effects on an experimental model using neurons from rats’ brains. The cells underwent a lack of oxygen and glucose analogous to that which they suffer, within the brain, when there is a lack of blood flow (what happens when there is a cerebral ischemia) caused by an infarct or a traumatism. When a lesion of this type occurs, the cells either die directly or, in many cases, they becomes victims of a slow programmed death called apoptosis, a kind of "suicide" at a cellular level.



The researchers observed that ranitidine acts preferentially on the neurons that are in the process of apopotosis, and conclusively reduces the percentage of cells that die. Even when treatment is initiated six hours after the lack of oxygen and glucose, and maintaining it over a 24-hour period, this substance reduces by a quarter the number cells that die with respect to the number of cells that die when there is no treatment.

The fact that in the laboratory studies ranitidine’s activity was optimal when administered hours after the lack of oxygen and glucose is highly important when looking towards a future use as treatment for cerebral ischemia in humans, in that, obviously, therapeutic treatments always take place after the time of the infarct or traumatism.

The authors of the research, recently published in Stroke magazine, affirm that the most immediate challenge is to verify the efficacy of the substance in in vivo experimental models of cerebral ischemia, because they have obtained good preliminar results with alive rats. Ranitidine is already widely used as a drug for treating gastric ulcers, which will accelerate the step towards clinical trials on humans. In fact, the researchers are already designing these clinical trails with associated universitary hospitals (Hospital Vall Hebron and Hospital de Sant Pau, in Barcelona).

The researchers also point out the need to work on designing new chemical compounds based on ranitidine that facilitate its administration, because the substance has difficulty moving from the blood flow to the brain. That is not an impediment in hospital interventions, as it can be administered directly to the brain, but to facilitate treatment it will be necessary to find a way in which the drug can be administered by oral route.

The following people participated in the research: Cristina Malagelada, Josefa Sabrià, José Rodríguez, Xavier Xifró and Nahuai Badiola. They are all researchers at the Institute of Neurosciences and of the Biochemical Unit (Faculty of Medicine) of the Department of Biochemistry and of Molecular Biology at the UAB.

Octavi López Coronado | EurekAlert!
Further information:
http://www.uab.es

More articles from Health and Medicine:

nachricht A better way to measure the stiffness of cancer cells
01.03.2017 | Duke University

nachricht Humans have three times more brown body fat
01.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>