Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New route to Parkinson’s found in cells’ "garbage disposal" system

16.12.2004


Researchers have known that mutations in a key gene called parkin are a major cause of Parkinson’s disease (PD). Now they have discovered a new mechanism by which the parkin gene can be compromised, a finding that they say could lead to new drugs for the disorder.

Andrea Lozano, Senior Scientist at the Toronto Western Research Institute, of University Health Network and Professor of Surgery at the University of Toronto and colleagues found that the protein produced by a gene called BAG5 inhibits parkin activity and the action of another protein, called Hsp70, a "chaperone" that works with parkin. They found in studies with rats that BAG5 enhances the death of the dopaminergic neurons targeted by Parkinson’s and that inhibiting the gene reduces such death.

Parkin is part of the cell’s "garbage disposal" system that rids the cell of unwanted proteins by degrading them. Mutations of parkin eliminate its ability to chemically "tag" such proteins to designate them for destruction in the cell’s proteasome--a process called ubiquitinylation. Loss of such ability causes such protein garbage to aggregate into lethal clumps in neurons--a hallmark of many neurodegenerative diseases. In the brain, the parkin protein works with Hsp70, which helps correct the folding of misfolded proteins.



BAG5 is one of a family of BAG proteins known to interact with other proteins to aid a variety of cell processes. The structure of BAG5 led Lozano and colleagues to explore whether it might play a role in the proteasome, along with parkin and Hsp70.

Their experiments revealed that BAG5 was activated when dopaminergic neurons were injured, suggesting a role in neurodegeneration. Experiments also revealed that BAG5 inhibits Hsp70 and interacts directly with parkin, inhibiting its activity. This inhibition, they found, enhances the formation of protein aggregates, and this formation was inhibited when the researchers shut down the activity of BAG5. In other test tube studies, the researchers also found that BAG5 inhibited parkin’s ability to protect cells against proteasome dysfunction and cell death.

In experiments with rats, the researchers found that BAG5 enhanced the degeneration of dopaminergic neurons and that inhibiting BAG5 increased neuronal survival.

"Based on our findings, we propose a novel mechanism for neurodegeneration in which BAG5 interacts with both parkin and Hsp70, resulting in decreased parkin and Hsp70 function, two outcomes that are deleterious to cell survival," concluded the researchers. "Given the role of BAG5 in modulating ubiquitinylation, protein aggregation, and cell death, it may serve as a useful therapeutic target for neurodegenerative diseases such as PD."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>