Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First US SARS vaccine trial opens at NIH


Powerful research tools that speed up vaccine development have led to the start today of human tests for a preventive vaccine against the respiratory disease SARS. The disease killed hundreds of people around the world before it was brought under control in 2003 with aggressive conventional public health measures.

Researchers at the Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), will conduct the trials. The experimental vaccine against SARS, or severe acute respiratory syndrome, will be tested on 10 healthy volunteers at the NIH Clinical Center in Bethesda, MD. The clinic will do periodic follow-up exams on each volunteer for 32 weeks.

"This experimental vaccine is an outstanding achievement by NIAID researchers," said Health and Human Services Secretary Tommy G. Thompson. "It is a model for research that could greatly shorten the time needed to create vaccines to be tested against other diseases."

"The Vaccine Research Center, a cutting-edge facility established here at NIH just five years ago, encompasses the entire spectrum of vaccine development from basic research to clinical testing," says NIH Director Elias A. Zerhouni, M.D. "This is why our team at NIAID has been able to develop this vaccine at an unprecedented pace, using technological discoveries that were not available just a few short years ago."

The primary goal of the study is to determine if the experimental vaccine is safe in people. A secondary goal is to assess how well the vaccine stimulates the immune system to produce antibodies and cellular immunity, in this case, focusing on the SARS spike protein. The spike protein protrudes from the virus’ outer envelope and helps it bind to cells it infects.

SARS was spotted first in China in November 2002. The virus sickened 8,096 and killed 774 worldwide by July 2003, according to the World Health Organization (WHO). SARS was brought under control with classic public health techniques: epidemiological investigations, patient isolations, quarantines of exposed people and stringent restrictions on travel.

The sudden appearance of SARS, its severity, and its ability to be spread far and fast by international travelers, spurred medical researchers. NIAID researchers developed the vaccine with unprecedented speed. Just 21 months passed from when international health officials recognized SARS as a new infectious disease to the opening of the NIAID human clinical vaccine trial. It often takes decades for scientists to develop a successful vaccine against an infectious disease. "In the case of SARS, we have dramatically cut vaccine development time with powerful new tools from two different fields, molecular biology and information technology," says Anthony S. Fauci, M.D., director of NIAID.

Instead of using weakened or inactivated virus, which is typical for vaccine development, the new vaccine is composed of a small circular piece of DNA that encodes the viral spike protein. Scientists modified the DNA to minimize the risk of it combining with the SARS virus or other viruses of the SARS type, called coronaviruses.

Scientists expect that the DNA will direct human cells to produce proteins very similar to the SARS spike protein. The immune system should recognize these proteins as foreign and then mount a defense against them. If the vaccinated person ever encounters the actual SARS virus, his or her immune system will be primed to neutralize it.

"It is truly remarkable that less than two years ago we were facing an unknown global health threat, and now we are testing a promising vaccine that may help us to counter that threat should it re-emerge," Dr. Fauci said.

After SARS was identified as a disease, researchers worked hastily to identify the cause of the mysterious respiratory ailment and to develop therapies and vaccines. By April 2003, NIAID-funded researchers in Hong Kong were the first to show that SARS is a viral disease. They soon proved that a newly emerging coronavirus causes SARS. By May, an international collaboration of researchers had decoded the genetic sequence of the SARS coronavirus, opening many avenues of research to develop diagnostic tests, therapies and vaccines.

An NIAID team, lead by NIAID Vaccine Research Center Director Gary J. Nabel, M.D., used the available SARS coronavirus genomic information to develop a vaccine based on the gene for the SARS spike protein. The vaccine performed very well in mice, reducing the levels of virus in the lungs of infected mice by more than a million-fold, Dr. Nabel and colleagues reported in Nature in March 2004.

"Two years ago, we didn’t know that this virus existed. Today, we begin clinical trials of a promising vaccine candidate. We owe the speed of this research to modern molecular genetics. The technology enables us rapidly to translate scientific discoveries into clinical interventions and improves our ability to battle these ever-evolving, highly lethal microbes," says Dr. Nabel.

Under a contract with NIAID, Vical Inc. of San Diego, CA, is producing the SARS vaccine for the NIAID clinical trial. For more information on the SARS vaccine trial, phone the Vaccine Research Center’s toll free number 1-866 833-LIFE.

Chinese researchers began human testing of a SARS vaccine in May of this year. The Chinese vaccine trial uses an inactivated SARS virus vaccine developed through conventional vaccine technology.

While the bulk of SARS cases were in China, Hong Kong and Singapore, eventually cases also occurred in Canada, Europe and the United States, according to WHO. There were 27 probable SARS cases in the United States. No U.S. residents died of the disease, according to WHO.

Linda Joy | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>