Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Variants May Help Fend Off HIV Infection

09.12.2004


A team of researchers based partly in South Africa has identified a key set of immune system molecules that helps determine how effectively a person resists infection with human immunodeficiency virus (HIV). Their work shows that mothers with a specific type of genetic makeup may be less likely to pass HIV to their offspring.



The finding has important implications for the development of vaccines to combat the AIDS epidemic, according to Bruce D. Walker, a Howard Hughes Medical Institute researcher. Walker is one of the leaders of the project, and a professor of medicine at Harvard Medical School and director of the Partners AIDS Research Center at Massachusetts General Hospital.

The research also offers an intriguing glimpse into the simultaneous evolution of a pathogen and its human host. “This is the closest we have come to being able to watch as the evolution of the human population is affected by a pathogen,” Walker said.


The other leaders of the project were Philip Goulder, assistant professor of medicine at Partners AIDS Research Center, and Hoosen (Jerry) Coovadia, professor of HIV/AIDS research at the Nelson R. Mandela School of Medicine at the University of KwaZulu-Natal. A paper describing their work was published in the December 9, 2004, issue of Nature.

AIDS researchers long have wondered why people have varying responses to HIV infection. “Some people rapidly progress to illness within a year or two, while others after 20 years of follow-up are still doing fine,” said Walker. “The range of outcomes is widespread.”

To examine the question, Walker and his colleagues focused on the class I human leukocyte antigen (HLA) molecules that occur in most of the cells in the body. When a cell is infected with a virus, the HLA molecules grab pieces of the proteins made by the virus and display the protein fragments on their surface. Other immune system cells recognize the foreign proteins presented by the HLA molecules and kill the infected cell, thereby stemming the infection.

The research team found that an individual’s response to HIV infection depends heavily on the varieties — or alleles — of the genes encoding HLA molecules that the person has. But not all categories of HLA genes are equally important. The class I HLA alleles are divided into three categories — HLA-A, HLA-B, and HLA-C. Specific HLA-B alleles generate much stronger immune responses than do other HLA alleles. For example, in a study of 706 infected individuals in South Africa who had not yet begun treatment, the type of HLA-B alleles a person has affected the amount of virus in the blood; the number of CD4 cells a person has (a common measure of immune system health); and immune reaction to proteins made by HIV. By contrast, different alleles of HLA-A and HLA-C genes had no effect on the immune response.

“The B alleles are doing most of the work,” said Walker. Vaccine developers therefore should give close attention to responses generated by the HLA-B alleles, “since those seem to be the critical ones that influence viral load.”

The involvement of the HLA-B alleles was particularly interesting to the researchers, since HLA-B alleles are much more diverse than either HLA-A or HLA-C alleles in human populations. Immunologists often have speculated that the greater diversity of HLA-B alleles indicates that they have been important during human history in fending off attacks from other pathogens. For instance, evolutionary forces may have promoted the diversification of HLA-B alleles so that human populations would present a multifaceted defense against infection.

In their Nature paper, Walker and his colleagues point out that the evolutionary influence of the HIV epidemic on HLA-B alleles already can be seen in the offspring of mothers infected with HIV. Mothers with protective alleles pass on HIV infection to their children less often than do mothers with alleles that do less to stop the progression of the disease. As a result, the frequency of the protective alleles would be expected to grow in the population.

The researchers conducted much of their work at the new Doris Duke Medical Research Institute in Durban, which is the largest city of KwaZulu-Natal Province in South Africa. The province is at the epicenter of the HIV epidemic in sub-Saharan Africa. In KwaZulu-Natal Province, a third of pregnant women are infected with HIV, and in Durban, prevalence among pregnant women exceeds 50 percent.

Doing AIDS research in South Africa “is one of the things we’re most excited about,” said Walker. Based on previous research experiences in the country, Walker and several colleagues associated with Harvard Medical School and Massachusetts General Hospital knew that South Africa had very talented scientists. But they were also aware that those researchers did not usually have the financial support to develop professionally.

“We decided to set our sights high,” Walker said. “We decided to build the world’s best biomedical research institute and put it right in the middle of the world’s worst HIV epidemic, because we knew that that would facilitate the science needed to understand why the epidemic is so bad there, as well as vaccine development.”

Funding from the Doris Duke Charitable Foundation through Massachusetts General Hospital enabled construction of the institute at the University of KwaZulu-Natal’s Nelson R. Mandela School of Medicine. “The institute opened its doors in July 2003, and in December 2004 we have a Nature paper by a first-author, who is South African and who was not doing research when we arrived because of a lack of opportunities,” said Walker.

Photini Kiepiela, the first author of the article and a researcher at institute, agreed that the establishment of the institute was critical in generating the new results. “The purpose of doing this work here is to nurture local South African scientists. [And] if not for this institute, it would not have been possible to do this work here.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>