Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

US researchers warn of possible fertility risk to men using laptop computers on their laps

09.12.2004


US fertility experts today (Thursday 9 December) warned teenage boys and young men to consider limiting the time that they use laptop computers positioned on their laps, as long-term use may affect their fertility.



The increasing popularity of laptop computers (LC), coupled with existing evidence that elevated scrotal temperature can result in sperm damage, prompted researchers from the State University of New York at Stony Brook to undertake the first study into the effect of heat from LC on scrotal temperature.

The findings are reported in Europe’s leading reproductive medicine journal Human Reproduction[1]. They show that using an LC on the lap increased the left scrotal temperature by a median 2.6°C and the right by a median 2.8°C. Several previous studies have shown that increases in testicular or scrotal temperatures of between 1°C and 2.9°C are associated with a sustained and considerable negative effect on spermatogenesis and fertility.


Lead researcher Dr Yefim Sheynkin, Associate Professor of Urology and Director, Male Infertility and Microsurgery at the University, said: "By 2005, there will be 60 million laptop computers in use in the USA and a predicted 150 million worldwide. Continued improvements in power, size and price of LC have favoured their increased use in younger people and laptop sales now exceed those of desktop computers."

With the exception of an anecdotal report of genital burns, the effect of portable computers on scrotal temperature when they are used on the lap was not known, he said. "Laptops can reach internal operating temperatures of over 70°C. They are frequently positioned close to the scrotum, and as well as being capable of producing direct local heat, they require the user to sit with his thighs close together to balance the machine, which traps the scrotum between the thighs."

The researchers worked with 29 healthy volunteers aged 21 to 35, measuring scrotal temperatures with and without laptops. Two one-hour sessions of scrotal temperature measurements were performed on different days in the same room with a median room temperature of 22.28°C. The men were dressed in the same casual clothing for each session and sessions with and without LC were conducted at the same time of the day. Body temperature was taken by mouth beforehand and each volunteer spent 15 minutes standing in the room to adjust to room temperature before being seated.

A non-working LC was placed on the lap so that the volunteer could adopt the right position to balance the laptop, then removed, and the seating position held for one hour, with scrotal temperature being measured every three minutes. The same procedure was repeated for one hour, with the same baselines controls, but this time with a working laptop. The temperature of the bottom surface of the LC was also measured at intervals.

"We found that scrotal temperatures rose by 2.1°C when the men sat with their thighs together, which is necessary to keep LC on the lap. But, the rise was significantly higher when the LC were used – 2.8°C on the right side and 2.6°C on the left," said Dr Sheynkin. " It shows that scrotal hyperthermia is produced by both special body posture and local heating effect of LC."

The median surface temperature of Pentium 4 computers used increased from nearly 31°C at the start of the experiment to nearly 40°C after one hour.

Dr Sheynkin said: "The body needs to maintain a proper testicular temperature for normal sperm production and development (spermatogenesis). "Portable computers in a laptop position produce scrotal hyperthermia by both the direct heating effect of the computer and the sitting position necessary to balance the computer. The magnitude of scrotal hyperthermia associated with abnormal spermatogenesis is unclear. But, previous studies suggest that 1°C above the baseline is the possible minimal thermal gradient capable of inhibiting spermatogenesis and sperm concentration may be decreased by 40% per 1°C increment of median daytime scrotal temperature.

"We don’t know the exact frequency and time of heat exposure capable of producing reversible or irreversible changes in spermatogenesis. Studies have shown significant but reversible changes after short-term heating. However, LC produce significant repetitive transient scrotal hyperthermia for years, and insufficient recovery time between heat exposures may cause irreversible or partially reversible changes in male reproductive function."

Dr Sheynkin said his team now planned further studies to evaluate the heating effect of LC on testicular function and sperm parameters. For now, he did not know an exact time for safe use. However, their study showed that within the first 15 minutes of use scrotal emperatures increased by 1°C, so it did not take long to reach a point that may affect testicular function. Also, frequent use may cause intermittent temperature rises, which could significantly increase a single heating effect. "Until further studies provide more information on this type of thermal exposure", he said, "teenage boys and young men may consider limiting their use of LC on their laps, as long-term use may have a detrimental effect on their reproductive health."

Dr Sheynkin added that two LC brands were tested randomly to avoid criticism that brands may differ. "All laptop computers generate significant heat due to the increasing power requirements of computer chips. New laptops with higher power requirements may produce even more heat. So far, computer fans and ’heat sinks’ are not sufficient. It’s possible that external protective devices could somewhat help, but it is essential to confirm their protective effect in a clinical study to prevent commercial advertising and use of inefficient and useless products."

[1] Increase in scrotal temperature in laptop computer users. Human Reproduction. Doi:10.1093/humrep/deh616.

Margaret Willson | alfa
Further information:
http://www.mwcommunications.org.uk

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>