Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Worming a way into ‘pleasurable’ endoscopy


Endoscopy can be a deeply uncomfortable experience. Improving matters, BIOLOCH researchers are attempting to apply the motion techniques used by lower animal forms to endoscopy technology to develop a prototype capable of ‘pulling’ itself into a patient’s internals, rather than being pushed as it is now.

Having a tube pushed inside you, no matter how small or how sensitively applied, is not a procedure anyone would want to repeat. Plus there is always the risk of tearing delicate internal organs. Not so surprising, therefore, that the potential for a successful alternative could be very high.

The BIOLOCH IST project is using the ragworm or paddleworm, as commonly found on the seashore as their model for an endoscope-type prototype instrument.

Imitating the paddleworm

“The basic concept is to develop a replacement for the current colonic endoscope, which is quite large and stiff, and has to be pushed inside a patient,” says Paolo Dario, from the Scuola Superiore Sant’Anna of Pisa (Italy). “If you can pull a device rather than push it, you can reduce the bending forces and so lessen the chance of damage to a patient’s internal organs. We looked to nature for a model and chose the paddleworm, because it is capable of ‘swimming’ with ease through relatively soft, unstructured environments.”

BIOLOCH’s first step was to study the locomotion mechanisms used by these animals, which move in wet environments containing large amounts of solid and semi-solid material. Researchers also examined the mechanisms of attachment used by parasites, both internal and external, in order to understand how they gained purchase on soft tissue.

The project’s objective is to understand the motion systems used by such lower animal forms, and to design and fabricate mini- and micro-machines inspired by such biological systems. Such bio-inspired machines have potential applications in many fields where direct human intervention is difficult or dangerous, and remote inspection is required.

Paddling forwards

The project’s initial prototype consists of a simple worm with a flexible central spine and paddles sticking out either side along the worm’s body. Researchers are now working on a more advanced prototype in which the paddles themselves are capable of moving. To this end the team has had to recruit a biologist to examine how the worms move, and explain these movements to the engineers so that they can work out how to actuate and control the mechanical worm.

Julian Vincent from the University of Bath (UK) explains that paddleworms have a very different way of moving compared to earthworms. The paddleworm’s sine wave locomotion technique runs forward along the body rather than backwards as is the case with the earthworm.

“If you take a wriggly worm with a smooth body, the sine wave moves backwards as the worm moves forwards. But if you put paddles on which stick out to the side of the body, the physics of thrust production changes and the sine wave has to move forwards. The advantage from our point of view is that the paddle worm has a much greater variety of styles of moving, since it can remain straight and just move the paddles, wriggle and keep the paddles still, or wriggle and move the paddles as well. This gives more versatility in speed and general control. The paddle worm can also build burrows very rapidly. So the chances are that a robotic motor based on this design will be more versatile and faster than most others.’

Making endoscopy pleasurable!

At the moment the prototypes are rather slow. Current medical procedure for endoscopies allows around only 10 minutes to reach the end of the colon. Says Dario, “Our worm takes about thirty minutes to cover a comparable distance, so it needs to be speeded up by a factor of ten to fifty. However if we can get the paddles to move as well as the central spine, this should double the energy delivered during the power stroke, so we aim to improve the speed by a factor of ten.”

An early prototype of the BIOLOCH worm is already on display at an exhibition on biomimetics at the Zoological Museum in Copenhagen, Denmark, which continues until early 2005. However, the BIOLOCH team intend to have the second, more advanced prototype, which will have a smaller diameter and be more flexible, ready and working by the end of the project in mid-2005.

“Ultimately”, says Vincent, “our idea is to turn the current ordeal of the colonic endoscopy procedure into something akin to a pleasurable experience!”

Tara Morris | alfa
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>