Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worming a way into ‘pleasurable’ endoscopy

08.12.2004


Endoscopy can be a deeply uncomfortable experience. Improving matters, BIOLOCH researchers are attempting to apply the motion techniques used by lower animal forms to endoscopy technology to develop a prototype capable of ‘pulling’ itself into a patient’s internals, rather than being pushed as it is now.

Having a tube pushed inside you, no matter how small or how sensitively applied, is not a procedure anyone would want to repeat. Plus there is always the risk of tearing delicate internal organs. Not so surprising, therefore, that the potential for a successful alternative could be very high.

The BIOLOCH IST project is using the ragworm or paddleworm, as commonly found on the seashore as their model for an endoscope-type prototype instrument.



Imitating the paddleworm

“The basic concept is to develop a replacement for the current colonic endoscope, which is quite large and stiff, and has to be pushed inside a patient,” says Paolo Dario, from the Scuola Superiore Sant’Anna of Pisa (Italy). “If you can pull a device rather than push it, you can reduce the bending forces and so lessen the chance of damage to a patient’s internal organs. We looked to nature for a model and chose the paddleworm, because it is capable of ‘swimming’ with ease through relatively soft, unstructured environments.”

BIOLOCH’s first step was to study the locomotion mechanisms used by these animals, which move in wet environments containing large amounts of solid and semi-solid material. Researchers also examined the mechanisms of attachment used by parasites, both internal and external, in order to understand how they gained purchase on soft tissue.

The project’s objective is to understand the motion systems used by such lower animal forms, and to design and fabricate mini- and micro-machines inspired by such biological systems. Such bio-inspired machines have potential applications in many fields where direct human intervention is difficult or dangerous, and remote inspection is required.

Paddling forwards

The project’s initial prototype consists of a simple worm with a flexible central spine and paddles sticking out either side along the worm’s body. Researchers are now working on a more advanced prototype in which the paddles themselves are capable of moving. To this end the team has had to recruit a biologist to examine how the worms move, and explain these movements to the engineers so that they can work out how to actuate and control the mechanical worm.

Julian Vincent from the University of Bath (UK) explains that paddleworms have a very different way of moving compared to earthworms. The paddleworm’s sine wave locomotion technique runs forward along the body rather than backwards as is the case with the earthworm.

“If you take a wriggly worm with a smooth body, the sine wave moves backwards as the worm moves forwards. But if you put paddles on which stick out to the side of the body, the physics of thrust production changes and the sine wave has to move forwards. The advantage from our point of view is that the paddle worm has a much greater variety of styles of moving, since it can remain straight and just move the paddles, wriggle and keep the paddles still, or wriggle and move the paddles as well. This gives more versatility in speed and general control. The paddle worm can also build burrows very rapidly. So the chances are that a robotic motor based on this design will be more versatile and faster than most others.’

Making endoscopy pleasurable!

At the moment the prototypes are rather slow. Current medical procedure for endoscopies allows around only 10 minutes to reach the end of the colon. Says Dario, “Our worm takes about thirty minutes to cover a comparable distance, so it needs to be speeded up by a factor of ten to fifty. However if we can get the paddles to move as well as the central spine, this should double the energy delivered during the power stroke, so we aim to improve the speed by a factor of ten.”

An early prototype of the BIOLOCH worm is already on display at an exhibition on biomimetics at the Zoological Museum in Copenhagen, Denmark, which continues until early 2005. However, the BIOLOCH team intend to have the second, more advanced prototype, which will have a smaller diameter and be more flexible, ready and working by the end of the project in mid-2005.

“Ultimately”, says Vincent, “our idea is to turn the current ordeal of the colonic endoscopy procedure into something akin to a pleasurable experience!”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>