Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marrow transplant method developed at Stanford may eliminate fatal side effects

07.12.2004


Bone marrow transplantation can cure lymphomas and leukemia, but in about half of the cases transplanted immune cells wind up attacking the patient’s body, as well as the cancer.



In response to this problem, researchers at the Stanford University School of Medicine have developed a technique that can virtually eliminate this life-threatening complication, known as graft-versus-host disease, without compromising the transplanted cells’ effectiveness against cancer.

The therapy entails adjusting the patient’s level of a specific type of immune cell, the regulatory T cells, before the transplant is done. The method was first developed in mice by Samuel Strober, MD, professor of medicine (immunology and rheumatology), who has been studying these types of cells for more than 25 years. Robert Lowsky, MD, assistant professor of medicine (bone marrow transplantation), has adapted this strategy for humans along with Strober, and will present the results of tests Dec. 6 at the annual American Society of Hematology meeting in San Diego.


In two clinical trials funded by the National Institutes of Health, Lowsky, Strober and other colleagues found that only one of the 37 patients who received the treatment developed graft-versus-host disease. "You would have expected something in the order of 30 to 60 percent incidence of severe graft-versus-host disease in these patients, according to conventional methods," said Strober.

Studies of the new method found there was no increase in the rate of infections in the treated patients. The studies also found that the majority of patients who were in partial remission went into complete remission, and those who were in complete remission didn’t relapse. "It looks like there is a potent anti-tumor effect from our method despite the incidence of graft-versus-host disease being dramatically lowered," said Lowsky.

Also at the conference, Strober will conduct a session in which he reviews the checkered history of regulatory T cells. For years immunologists were polarized into groups who believed in the cells, once known as suppressor T cells, and those who doubted their existence. But with the development of more advanced techniques for distinguishing between the different types of immune system cells, the existence of the regulatory T cells has been confirmed. The latest research suggests that the regulatory T cells act as the immune system’s peacekeepers, signaling to other T cells when to hold off from attacking an intruder.

"The news going into this meeting is that the field of regulatory T cells has not only come out of the clouded period that it was in, but is now being accepted and adapted into clinical trials as a conceptual framework for achieving certain desirable outcomes, for example in the area of bone marrow transplantation," said Strober.

Always a proponent of the existence of regulatory T cells, Strober worked out over the years a strategy using irradiation and antibodies to increase the relative amount of regulatory T cells in the immune tissues of host mice from about 1 percent of the total T cells to more than 90 percent. By increasing the relative amount of these cells, he found that he could retain the desired effect of killing cancerous cells following bone marrow transplantation, but eliminate the attack on host tissues. "It allows you to throw out the one effect but not the other," he said.

Lowsky said he and Strober have now taken Strober’s animal model and translated it to the clinical setting for people. Although they have not yet gathered conclusive evidence that this cellular process worked the same in humans as it did in mice-that would require doing direct examinations of cells from patients’ spleens or lymph nodes-Lowsky said their evaluations of the blood and marrow samples suggest that is the case.

Now that the method is proving to be a viable therapy for humans, the team will be testing it with other cancer centers.

Others involved in the clinical trial are Robert Negrin, MD, professor of medicine; Yinping Liu, MD, a staff research associate and Judith Shizuru, MD, PhD, associate professor of medicine, all in the bone marrow transplantation division, and Tsuyoshi Takahashi, MD, a research fellow in Strober’s lab.

M.A. Malone | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>