Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marrow transplant method developed at Stanford may eliminate fatal side effects

07.12.2004


Bone marrow transplantation can cure lymphomas and leukemia, but in about half of the cases transplanted immune cells wind up attacking the patient’s body, as well as the cancer.



In response to this problem, researchers at the Stanford University School of Medicine have developed a technique that can virtually eliminate this life-threatening complication, known as graft-versus-host disease, without compromising the transplanted cells’ effectiveness against cancer.

The therapy entails adjusting the patient’s level of a specific type of immune cell, the regulatory T cells, before the transplant is done. The method was first developed in mice by Samuel Strober, MD, professor of medicine (immunology and rheumatology), who has been studying these types of cells for more than 25 years. Robert Lowsky, MD, assistant professor of medicine (bone marrow transplantation), has adapted this strategy for humans along with Strober, and will present the results of tests Dec. 6 at the annual American Society of Hematology meeting in San Diego.


In two clinical trials funded by the National Institutes of Health, Lowsky, Strober and other colleagues found that only one of the 37 patients who received the treatment developed graft-versus-host disease. "You would have expected something in the order of 30 to 60 percent incidence of severe graft-versus-host disease in these patients, according to conventional methods," said Strober.

Studies of the new method found there was no increase in the rate of infections in the treated patients. The studies also found that the majority of patients who were in partial remission went into complete remission, and those who were in complete remission didn’t relapse. "It looks like there is a potent anti-tumor effect from our method despite the incidence of graft-versus-host disease being dramatically lowered," said Lowsky.

Also at the conference, Strober will conduct a session in which he reviews the checkered history of regulatory T cells. For years immunologists were polarized into groups who believed in the cells, once known as suppressor T cells, and those who doubted their existence. But with the development of more advanced techniques for distinguishing between the different types of immune system cells, the existence of the regulatory T cells has been confirmed. The latest research suggests that the regulatory T cells act as the immune system’s peacekeepers, signaling to other T cells when to hold off from attacking an intruder.

"The news going into this meeting is that the field of regulatory T cells has not only come out of the clouded period that it was in, but is now being accepted and adapted into clinical trials as a conceptual framework for achieving certain desirable outcomes, for example in the area of bone marrow transplantation," said Strober.

Always a proponent of the existence of regulatory T cells, Strober worked out over the years a strategy using irradiation and antibodies to increase the relative amount of regulatory T cells in the immune tissues of host mice from about 1 percent of the total T cells to more than 90 percent. By increasing the relative amount of these cells, he found that he could retain the desired effect of killing cancerous cells following bone marrow transplantation, but eliminate the attack on host tissues. "It allows you to throw out the one effect but not the other," he said.

Lowsky said he and Strober have now taken Strober’s animal model and translated it to the clinical setting for people. Although they have not yet gathered conclusive evidence that this cellular process worked the same in humans as it did in mice-that would require doing direct examinations of cells from patients’ spleens or lymph nodes-Lowsky said their evaluations of the blood and marrow samples suggest that is the case.

Now that the method is proving to be a viable therapy for humans, the team will be testing it with other cancer centers.

Others involved in the clinical trial are Robert Negrin, MD, professor of medicine; Yinping Liu, MD, a staff research associate and Judith Shizuru, MD, PhD, associate professor of medicine, all in the bone marrow transplantation division, and Tsuyoshi Takahashi, MD, a research fellow in Strober’s lab.

M.A. Malone | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>