Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SIDS risk linked to lack of experience with tummy-sleeping

07.12.2004


Babies who never sleep on their stomachs don’t learn behaviors that may lessen their risk of sudden infant death syndrome (SIDS), researchers at Washington University School of Medicine in St. Louis have found. Even so, the researchers caution that infants should always be placed on their backs to sleep.



"The first few times babies who usually sleep on their backs or sides shift to the prone (lying face down) position, they have a 19-fold increased risk of sudden death," says senior author Bradley T. Thach, M.D., a Washington University pediatrician at St. Louis Children’s Hospital. "We wondered if these babies, finding themselves face down, fail to turn their heads to breathe easier. If so, is that because their reflexes haven’t developed far enough or because they just don’t wake up?"

Thach and his colleagues studied 38 healthy infants aged 3 to 37 weeks. Half of the babies usually slept prone or had a history of turning prone during sleep. The other babies had never slept prone. The study is reported in the December issue of the journal Pediatrics.


The researchers constructed a moderately asphyxiating surface, a comforter placed over a foam rubber mattress with a two-inch deep circular depression that would lie directly beneath the baby’s face. When babies sleep face down on the surface, they "rebreath" air they have exhaled, and this air can have high amounts of carbon dioxide. A catheter taped beneath the babies’ noses allowed monitoring of carbon dioxide levels.

After four to five minutes of sleeping face down on this surface all 38 babies awoke and attempted to get fresher air. The babies with experience sleeping prone generally lifted and turned their heads to either side when they sensed the air was stale, thereby increasing their supply of oxygen-rich air. In contrast, the inexperienced infants generally nuzzled the bedding or briefly lifted their heads and then resumed sleeping face down. Overall, babies inexperienced with sleeping prone spent more time fully face down than their more experienced counterparts.

Nuzzling produced only a transient lowering of carbon dioxide levels at the nose, while complete head turns produced larger, sustained decreases in carbon dioxide. Head lifts also reduced carbon dioxide levels, but the decreases lasted only as long as the baby’s head was raised.

The researchers suggest that babies learn through experience which head movements decrease the discomfort associated with breathing high carbon dioxide levels. Therefore, babies with experience sleeping prone are better able to avoid conditions that may trigger SIDS. The research results support the hypothesis, advanced by others, that SIDS may result from insufficiently learned airway protective responses.

The findings also indicate that good head-lifting ability while lying prone may not be sufficient to protect a baby from SIDS. "Many parents think that if a baby can lift its head, he or she is okay to sleep prone, but that is a false assurance," Thach says. "Parents and other caregivers should never place an infant in the prone position until he or she shows the ability to spontaneously turn all the way over. Back-sleeping should continue to be strongly encouraged to protect against SIDS."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>