Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ground breaking Research Into Effect Of Millimetric Waveband (MMW) Frequencies On Human Skin


Ground breaking research in understanding the characteristics of human skin at millimetric waveband (MMW) frequencies is being conducted at Cranfield University – academic partner to the Royal Military College of Science at Shrivenham, Oxfordshire.

Leading the research study, Dr Clive Alabaster of the Radar Systems Group at Cranfield University, says: “This research study is important because MMW frequencies are increasingly being used in a large number of applications in radar as well as defence and civilian communications, such as guided missiles, 3G mobile phones, radio antennas, car cruise control and collision avoidance radar systems, and even airport security check-points. “To date, only predictive studies have attempted to describe human skin at these very high frequencies. This research study is for the first time collecting hard data in order to assess the potential risks associated with this technology. “The simple fact is that skin exposed to these very high frequencies bears the brunt of radiation exposure. As a result, the skin absorbs MMW frequencies and is heated on the surface with very little power penetrating to other tissue types which are deeper in the body,” explains Dr Alabaster.

The research programme, sponsored by Japanese measurement equipment manufacturer Anritsu, has arrived at some preliminary results. Using the safety benchmark set by the National Radiological Protection Board (NRPB) of 10 milliWatts per square centimetre, Dr Alabaster calculated the temperature rise of skin exposed to this level of MMW radiation over a 30 second period. “The initial results on a single skin sample showed that this exposure would cause the surface of the skin to heat by only 0.2°C. The body will hardly notice this increase in temperature and so we can conclude that current legislation will avoid any burning hazard. Our future work in this area will reaffirm these results and seek to extend the study to a much wider variety of skin samples,” adds Dr Alabaster.

“Sponsorship of the Vector Network Analyser (VNA) equipment used by Dr Alabaster is a key part of our own research and development programme and provides us with valuable access to an important customer base which includes the Ministry of Defence, DSTL and QinetiQ,” says Gerald Ostheimer, European General Manager, Anritsu.

The same techniques that Dr Alabaster has applied to the measurement of skin are now being employed in the investigation of damage sustained by composite materials and structures. “These range from novel bridge materials through to helicopter rotor blades and even the materials of today’s modern sports cars,” concludes Dr Alabaster.

Ardi Kolah | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>