Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aggressors Need Dopamine, and Victims Require Serotnin

07.12.2004


The Novosibirsk researchers have managed to establish connection between mice’s aggressive behavior, biochemical modifications in their brain and the genes that cause those modifications.



Aggressive behavior is to a large extent genetically determined. The evidence of that are experiments with laboratory animals, including their successful selection into high- and low-aggressive lines. However, the “aggression gene” as such will hardly be ever found. Nevertheless, the researchers have managed to find the genes that are connected with aggressive behavior. Thus, researchers of the Institute of Cytology and Genetics (Siberian Branch, Russian Academy of Sciences) and Novosibirsk Institute of Bioorganic Chemistry (Siberian Branch, Russian Academy of Sciences, Novosibirsk) have analyzed biochemical modifications taking place in the brain of mice after aggressive collisions and have found the genes responsible for that.

Male mice scuffled with each other every day: the stronger ones used to attack and assault, the weaker ones – used to run away or posed as the subordinated. As a result of recurring fights some males won victories all the time and gained “experience of victors” - they became even more aggressive. Others got into position of “ chronical victims” who are in the state of constant stress. Both types changed their behavior. However, as the researchers have demonstrated, biochemistry of brain changed as well. The researchers measured the content of basic neuromediators – i.e. the substances that transmit a signal from one nerve cell to another – in the brain of winner mice and victim mice, and the products of their chemical transformations. The researchers were most interested in the dopamine and serotonin neuromediators. It has turned out that the recurring aggression experience of the “winners” leads to activation of the neurons system that uses dopamine (i.e., the dopaminergic system). However, the recurring experience of defeats with the “victims” causes weakening the dopaminergic system work, but in return, it activates the system of neurons that use serotonin – the serotonergic system. Apparently, these two systems work in antiphase.


At the next phase of investigation, the researchers faced the task of passing “from behavior to the gene”. Proceeding from biochemical results, the researchers worked with the genes that are connected with the dopaminergic and serotonergic systems of the brain. The difficulty is that neuromediators are not proteins. A gene contains information about protein synthesis. However, there exist multiple proteins that ensure the work of neuromediators, for example, enzymes participating in their transformations, and protein receptors on the membrane. The genes of these proteins constituted the subject of investigation. Namely, COMP gene that encodes enzyme of the dopamine and noradrenaline metabolism, TG gene that limits the rate of synthesis of these neuromediators, DAT gene that ceases the dopamine action on the cellular membrane, SERT gene that provides for transfer of serotonin and MAOA that causes its inactivation. The work of all these genes changed to the opposite with the winners and victims. The researchers made sure that formation of aggressive or submissive (subordinated) type of behavior causes realignment of work of several genes which leads to changes in activity of the neuromediator systems. Thus, the researchers have managed to find experimental approach that allows to establish connection between behavior to the gene. At least in terms of aggression. The research has been funded through grants from the Russian Foundation for Basic Research and INTAS.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>