Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system reduces risk of burns during interventional X-rays

06.12.2004


System helps physicians prevent radiation-induced skin injuries to patients



The threading of slender catheters and stents through arteries to deliver treatments to the heart, the brain and elsewhere in the body has produced nothing short of a medical revolution. But these delicate procedures require that patients be exposed to continuous radiation that can last up to an hour or more, sometimes causing skin injuries that, in rare cases, develop necrosis (tissue death), requiring skin grafts.

Now University at Buffalo researchers, working with an Amherst, N.Y., startup company called Esensors have developed a unique, real-time patient dose-tracking system, which lets physicians know when the accumulated radiation dose is approaching a dangerous threshold. The system is designed to be used either as a retrofit with existing fluoroscopy machines or to be included in the design of new machines.


Funded by grants totaling $814,000 from the U.S. Food and Drug Administration under the Small Business Innovation and Research program, the team of researchers is completing a prototype that will be clinically site-tested prior to commercialization. "Our system provides complete tracking of actual radiation levels on the skin, providing both instantaneous dose rate, as well as cumulative exposure," explained Daniel Bednarek, Ph.D., UB project director, researcher at UB’s Toshiba Stroke Research Center, professor of radiology and research associate professor of neurosurgery and biophysics in the School of Medicine and Biomedical Sciences.

Development of the system was spurred by a growing concern among physicians and by advisories issued by the Food and Drug Administration’s Center for Devices and Radiological Health warning of occasional, but severe, radiation-induced skin injuries during prolonged, fluoroscopically guided invasive procedures. "It can take a long time to insert a catheter into the brain and perform a complicated endovascular treatment, for example," explained Bednarek, also an adjunct professor in the Department of Physics in UB’s College of Arts and Sciences. "Patients undergoing such procedures sometimes develop erythema – redness – hair loss or even skin necrosis in the exposed area."

These effects can result whenever long fluoroscopic times are used during interventional procedures, such as coronary angioplasty, stent placement, radiofrequency cardiac ablation and vascular embolization. "With the equipment that currently is being used, the physician can minimize the chance for burns by moving the X-ray source instead of keeping the intensity on one spot," explained Darold Wobschall, Ph.D., UB professor emeritus of electrical engineering and president of Esensors. "The problem is that the physician is concentrating on the surgery and with X-rays coming in, he or she would have to be keeping mental track of where the dose is occurring at the same time." "Our system solves that problem," said Wobschall.

Through electronic sensors, the system tracks the position of the X-ray gantry and patient table, and thus, the location of the X-ray relative to the patient to determine the radiation exposure at the patient’s skin, he explained. "The computer tracks the beam’s location and intensity, presenting the beam and the cumulative distribution of dose on the patient’s skin as a color-coded graphic on a display screen," he said.

As the dose accumulates, the color on the display changes from green, which is acceptable, through yellow to red, which is a signal that the patient could be receiving too much radiation. This visualization of the X-ray beam and its location with reference to a graphic model of the patient presents the physician with real-time visual feedback, allowing him or her to make the appropriate adjustments. An added feature under development includes a visualization of the distribution and amount of X-ray scatter throughout the room, providing a way to gauge exposure for the physician and other health-care personnel who may be present.

The development effort for the computer graphic display was led by co-investigator Kevin Chugh, Ph.D., formerly a research scientist in UB’s New York State Center for Engineering Design and Industrial Innovation (NYSCEDII).

Petru M. Dinu, a doctoral candidate in the UB Department of Physics in the College of Arts and Sciences, played a major role in developing the system at UB’s Toshiba Stroke Research Center.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>