Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system reduces risk of burns during interventional X-rays

06.12.2004


System helps physicians prevent radiation-induced skin injuries to patients



The threading of slender catheters and stents through arteries to deliver treatments to the heart, the brain and elsewhere in the body has produced nothing short of a medical revolution. But these delicate procedures require that patients be exposed to continuous radiation that can last up to an hour or more, sometimes causing skin injuries that, in rare cases, develop necrosis (tissue death), requiring skin grafts.

Now University at Buffalo researchers, working with an Amherst, N.Y., startup company called Esensors have developed a unique, real-time patient dose-tracking system, which lets physicians know when the accumulated radiation dose is approaching a dangerous threshold. The system is designed to be used either as a retrofit with existing fluoroscopy machines or to be included in the design of new machines.


Funded by grants totaling $814,000 from the U.S. Food and Drug Administration under the Small Business Innovation and Research program, the team of researchers is completing a prototype that will be clinically site-tested prior to commercialization. "Our system provides complete tracking of actual radiation levels on the skin, providing both instantaneous dose rate, as well as cumulative exposure," explained Daniel Bednarek, Ph.D., UB project director, researcher at UB’s Toshiba Stroke Research Center, professor of radiology and research associate professor of neurosurgery and biophysics in the School of Medicine and Biomedical Sciences.

Development of the system was spurred by a growing concern among physicians and by advisories issued by the Food and Drug Administration’s Center for Devices and Radiological Health warning of occasional, but severe, radiation-induced skin injuries during prolonged, fluoroscopically guided invasive procedures. "It can take a long time to insert a catheter into the brain and perform a complicated endovascular treatment, for example," explained Bednarek, also an adjunct professor in the Department of Physics in UB’s College of Arts and Sciences. "Patients undergoing such procedures sometimes develop erythema – redness – hair loss or even skin necrosis in the exposed area."

These effects can result whenever long fluoroscopic times are used during interventional procedures, such as coronary angioplasty, stent placement, radiofrequency cardiac ablation and vascular embolization. "With the equipment that currently is being used, the physician can minimize the chance for burns by moving the X-ray source instead of keeping the intensity on one spot," explained Darold Wobschall, Ph.D., UB professor emeritus of electrical engineering and president of Esensors. "The problem is that the physician is concentrating on the surgery and with X-rays coming in, he or she would have to be keeping mental track of where the dose is occurring at the same time." "Our system solves that problem," said Wobschall.

Through electronic sensors, the system tracks the position of the X-ray gantry and patient table, and thus, the location of the X-ray relative to the patient to determine the radiation exposure at the patient’s skin, he explained. "The computer tracks the beam’s location and intensity, presenting the beam and the cumulative distribution of dose on the patient’s skin as a color-coded graphic on a display screen," he said.

As the dose accumulates, the color on the display changes from green, which is acceptable, through yellow to red, which is a signal that the patient could be receiving too much radiation. This visualization of the X-ray beam and its location with reference to a graphic model of the patient presents the physician with real-time visual feedback, allowing him or her to make the appropriate adjustments. An added feature under development includes a visualization of the distribution and amount of X-ray scatter throughout the room, providing a way to gauge exposure for the physician and other health-care personnel who may be present.

The development effort for the computer graphic display was led by co-investigator Kevin Chugh, Ph.D., formerly a research scientist in UB’s New York State Center for Engineering Design and Industrial Innovation (NYSCEDII).

Petru M. Dinu, a doctoral candidate in the UB Department of Physics in the College of Arts and Sciences, played a major role in developing the system at UB’s Toshiba Stroke Research Center.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>