Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New system reduces risk of burns during interventional X-rays


System helps physicians prevent radiation-induced skin injuries to patients

The threading of slender catheters and stents through arteries to deliver treatments to the heart, the brain and elsewhere in the body has produced nothing short of a medical revolution. But these delicate procedures require that patients be exposed to continuous radiation that can last up to an hour or more, sometimes causing skin injuries that, in rare cases, develop necrosis (tissue death), requiring skin grafts.

Now University at Buffalo researchers, working with an Amherst, N.Y., startup company called Esensors have developed a unique, real-time patient dose-tracking system, which lets physicians know when the accumulated radiation dose is approaching a dangerous threshold. The system is designed to be used either as a retrofit with existing fluoroscopy machines or to be included in the design of new machines.

Funded by grants totaling $814,000 from the U.S. Food and Drug Administration under the Small Business Innovation and Research program, the team of researchers is completing a prototype that will be clinically site-tested prior to commercialization. "Our system provides complete tracking of actual radiation levels on the skin, providing both instantaneous dose rate, as well as cumulative exposure," explained Daniel Bednarek, Ph.D., UB project director, researcher at UB’s Toshiba Stroke Research Center, professor of radiology and research associate professor of neurosurgery and biophysics in the School of Medicine and Biomedical Sciences.

Development of the system was spurred by a growing concern among physicians and by advisories issued by the Food and Drug Administration’s Center for Devices and Radiological Health warning of occasional, but severe, radiation-induced skin injuries during prolonged, fluoroscopically guided invasive procedures. "It can take a long time to insert a catheter into the brain and perform a complicated endovascular treatment, for example," explained Bednarek, also an adjunct professor in the Department of Physics in UB’s College of Arts and Sciences. "Patients undergoing such procedures sometimes develop erythema – redness – hair loss or even skin necrosis in the exposed area."

These effects can result whenever long fluoroscopic times are used during interventional procedures, such as coronary angioplasty, stent placement, radiofrequency cardiac ablation and vascular embolization. "With the equipment that currently is being used, the physician can minimize the chance for burns by moving the X-ray source instead of keeping the intensity on one spot," explained Darold Wobschall, Ph.D., UB professor emeritus of electrical engineering and president of Esensors. "The problem is that the physician is concentrating on the surgery and with X-rays coming in, he or she would have to be keeping mental track of where the dose is occurring at the same time." "Our system solves that problem," said Wobschall.

Through electronic sensors, the system tracks the position of the X-ray gantry and patient table, and thus, the location of the X-ray relative to the patient to determine the radiation exposure at the patient’s skin, he explained. "The computer tracks the beam’s location and intensity, presenting the beam and the cumulative distribution of dose on the patient’s skin as a color-coded graphic on a display screen," he said.

As the dose accumulates, the color on the display changes from green, which is acceptable, through yellow to red, which is a signal that the patient could be receiving too much radiation. This visualization of the X-ray beam and its location with reference to a graphic model of the patient presents the physician with real-time visual feedback, allowing him or her to make the appropriate adjustments. An added feature under development includes a visualization of the distribution and amount of X-ray scatter throughout the room, providing a way to gauge exposure for the physician and other health-care personnel who may be present.

The development effort for the computer graphic display was led by co-investigator Kevin Chugh, Ph.D., formerly a research scientist in UB’s New York State Center for Engineering Design and Industrial Innovation (NYSCEDII).

Petru M. Dinu, a doctoral candidate in the UB Department of Physics in the College of Arts and Sciences, played a major role in developing the system at UB’s Toshiba Stroke Research Center.

Ellen Goldbaum | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>