Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multidrug-Resistant Bacteria Found to be Airborne in Concentrated Swine Operation

06.12.2004


People could be exposed to antibiotic-resistant bacteria from breathing the air from concentrated swine feeding facilities, according to researchers at the Johns Hopkins Bloomberg School of Public Health. They detected bacteria resistant to at least two antibiotics in air samples collected from inside a large-scale swine operation in the Mid-Atlantic region of the United States. Until now, little research has been conducted regarding the presence of antibiotic-resistant bacteria in the air within industrial swine facilities. The study adds to the understanding of various pathways in which humans can be exposed to antibiotic-resistant bacteria, such as consumption of retail pork products and contact with or ingestion of soil, surface water and groundwater near production operations. The article is published in the online edition of Environmental Health Perspectives.



“Eating retail pork products is not the only pathway of exposure for the transfer of antibiotic-resistant bacteria from swine to humans. Environmental pathways may be equally important,” said Amy Chapin, the study’s lead author and a doctoral candidate at the Bloomberg School of Public Health’s Department of Environmental Health Sciences.

Chapin explained that the use of antibiotics in industrial animal production has a significant impact on the emergence of antibiotic-resistant bacteria that threaten human health. Using antibiotics in animals can decrease the effectiveness of the same antibiotics used to combat human infections. The non-therapeutic use of antimicrobials in livestock production in the United States comprises an estimated 60 to 80 percent of the total antimicrobial production nationally. Nontherapeutic doses of drugs are given to swine to promote growth and improve feed efficiency - not to treat actual swine disease.


The airborne bacteria samples that were found to be multidrug-resistant were: Enterococcus, coagulase negative staphylococci and viridans group streptococci. These bacteria are associated with a variety of human infections. The study found that 98 percent of the isolated samples were resistant to at least two of the following antibiotics: erythromycin, clindamycin, virginiamycin and tetracycline. All of these drugs (or their human drug counterparts) are important antibiotics in the treatment of human infections. In contrast, none of the bacterial samples were resistant to vancomycin – an antibiotic that has never been approved for use in swine production in the United States.

The researchers believe workers at concentrated animal feeding operations are at greatest risk for airborne exposure to antibiotic-resistant bacteria. However, the same workers may also become reservoirs of drug-resistant bacteria that can be spread to family and the broader community. The study also raises questions about the spread of drug-resistant bacteria to areas beyond the immediate site through ventilation fans and by the application of manure from feeding operations to off-site fields.

“These research findings add another piece to our understanding of human exposure to antibiotic-resistant bacteria,” said Kellogg Schwab, PhD, assistant professor in the Bloomberg School of Public Health’s Department of Environmental Health Sciences and the study’s corresponding author. “Finding and documenting the multiple environmental pathways of exposure are critical to finding solutions to the growing, serious problem of antibiotic-resistant bacteria in humans.”

The study was supported by the Johns Hopkins Center for a Livable Future at the Johns Hopkins Bloomberg School of Public Health and the National Institute for Occupational Safety and Health, Education Research Center. Amy Chapin is a Howard Hughes Medical Institute Pre-doctoral Fellow.

A. Rule, K.Gibson, and T.J. Buckley, from the Johns Hopkins Bloomberg School of Public Health, co-authored the study.

Contact for the Center for a Livable Future: Donna Mennitto at 410-502-7578 or dmennitt@jhsph.edu.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>