Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multidrug-Resistant Bacteria Found to be Airborne in Concentrated Swine Operation

06.12.2004


People could be exposed to antibiotic-resistant bacteria from breathing the air from concentrated swine feeding facilities, according to researchers at the Johns Hopkins Bloomberg School of Public Health. They detected bacteria resistant to at least two antibiotics in air samples collected from inside a large-scale swine operation in the Mid-Atlantic region of the United States. Until now, little research has been conducted regarding the presence of antibiotic-resistant bacteria in the air within industrial swine facilities. The study adds to the understanding of various pathways in which humans can be exposed to antibiotic-resistant bacteria, such as consumption of retail pork products and contact with or ingestion of soil, surface water and groundwater near production operations. The article is published in the online edition of Environmental Health Perspectives.



“Eating retail pork products is not the only pathway of exposure for the transfer of antibiotic-resistant bacteria from swine to humans. Environmental pathways may be equally important,” said Amy Chapin, the study’s lead author and a doctoral candidate at the Bloomberg School of Public Health’s Department of Environmental Health Sciences.

Chapin explained that the use of antibiotics in industrial animal production has a significant impact on the emergence of antibiotic-resistant bacteria that threaten human health. Using antibiotics in animals can decrease the effectiveness of the same antibiotics used to combat human infections. The non-therapeutic use of antimicrobials in livestock production in the United States comprises an estimated 60 to 80 percent of the total antimicrobial production nationally. Nontherapeutic doses of drugs are given to swine to promote growth and improve feed efficiency - not to treat actual swine disease.


The airborne bacteria samples that were found to be multidrug-resistant were: Enterococcus, coagulase negative staphylococci and viridans group streptococci. These bacteria are associated with a variety of human infections. The study found that 98 percent of the isolated samples were resistant to at least two of the following antibiotics: erythromycin, clindamycin, virginiamycin and tetracycline. All of these drugs (or their human drug counterparts) are important antibiotics in the treatment of human infections. In contrast, none of the bacterial samples were resistant to vancomycin – an antibiotic that has never been approved for use in swine production in the United States.

The researchers believe workers at concentrated animal feeding operations are at greatest risk for airborne exposure to antibiotic-resistant bacteria. However, the same workers may also become reservoirs of drug-resistant bacteria that can be spread to family and the broader community. The study also raises questions about the spread of drug-resistant bacteria to areas beyond the immediate site through ventilation fans and by the application of manure from feeding operations to off-site fields.

“These research findings add another piece to our understanding of human exposure to antibiotic-resistant bacteria,” said Kellogg Schwab, PhD, assistant professor in the Bloomberg School of Public Health’s Department of Environmental Health Sciences and the study’s corresponding author. “Finding and documenting the multiple environmental pathways of exposure are critical to finding solutions to the growing, serious problem of antibiotic-resistant bacteria in humans.”

The study was supported by the Johns Hopkins Center for a Livable Future at the Johns Hopkins Bloomberg School of Public Health and the National Institute for Occupational Safety and Health, Education Research Center. Amy Chapin is a Howard Hughes Medical Institute Pre-doctoral Fellow.

A. Rule, K.Gibson, and T.J. Buckley, from the Johns Hopkins Bloomberg School of Public Health, co-authored the study.

Contact for the Center for a Livable Future: Donna Mennitto at 410-502-7578 or dmennitt@jhsph.edu.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>