Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eat leafy green veggies to help prevent cataracts

03.12.2004


A new study from Ohio State University provides the first laboratory evidence that certain antioxidants found in dark leafy green vegetables can indeed help prevent cataracts.



Vitamin manufacturers often add the antioxidants lutein and zeaxanthin to their products, but until now there has been no biochemical evidence to support the claim that these substances help protect the eyes, said Joshua Bomser, a study co-author and an assistant professor of nutrition at Ohio State University. Some studies have suggested that these antioxidants boost eye health.

Results from laboratory experiments on human lens cells showed that lutein and zeaxanthin, antioxidants found in plants such as kale, spinach and collard greens, helped to protect the cells from exposure to ultraviolet light – a leading cause of cataract formation.


The researchers compared the effects of these antioxidants to vitamin E, an antioxidant also thought to reduce the onset of eye diseases. Lutein and zeaxanthin were nearly 10 times more powerful than vitamin E in protecting the cells from UV-induced damage.

Nearly 20 million people in the United States suffer from cataracts – a condition where the lens of the eye clouds over, making it difficult or nearly impossible to see. Current treatment is expensive and involves a surgical procedure that is performed more than 1.5 million times each year at an estimated cost of $3.4 billion.

"Along with the many environmental, lifestyle and genetic risk factors associated with cataracts, exposure to ultraviolet radiation from sunlight and oxidative stress appear to be the most relevant in this disease," Bomser said. "Our results are the first to provide physical evidence suggesting that lutein and zeaxanthin decrease damage caused by ultraviolet radiation."

The study appears in the current issue of the Journal of Nutrition.

The researchers treated human eye lens cells with varying concentrations of lutein, zeaxanthin or vitamin E. They then exposed these cells, along with a batch of untreated cells, to doses of ultraviolet-beta radiation for 10 seconds. UVB radiation is thought to be the primary environmental culprit in causing skin cancer as well as initiating cataract disease. "The dose of UVB radiation we used on the cells is about the same amount a person receives when they get a mild tan," Bomser said.

Adding lutein and zeaxanthin to the cell cultures provided double the protection from UVB damage – these antioxidants reduced signs of damage by 50 to 60 percent, compared to vitamin E, which reduced the same signs of damage by 25 to 32 percent.

The researchers also found that it took far less lutein and zeaxanthin as vitamin E – about 10 times less – to get this protective effect. "The lens is equipped with antioxidant defense mechanisms designed to guard against the harmful effects of ultraviolet radiation and oxidative stress," Bomser said. "In addition to protective enzymes and compounds like vitamins C and E, we think that low concentrations of lutein and zeaxanthin in the eye lens help shield the eye from the harmful effects of UVB radiation."

What researchers don’t know, however, is how these two antioxidants get into the eye. It’s what Bomser hopes to learn next. "Lutein and zeaxanthin accumulate in the retina and in the lens of the eye, but we’re not sure how they reach the eye in the first place," he said. "They travel through the bloodstream, but the lens doesn’t have a blood supply."

This work was supported in part by the Ohio Agricultural Research and Development Center and the Virginia Vivian Scholarship Fund of Ohio State’s College of Human Ecology.

Bomser conducted the research with Ohio State colleagues Mark Failla, professor and chair of nutrition, Chureeporn "Julie" Chitchumroonchockchai and Jayme Glamm.

Joshua Bomser | EurekAlert!
Further information:
http://www.ohio-state.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>