Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eat leafy green veggies to help prevent cataracts

03.12.2004


A new study from Ohio State University provides the first laboratory evidence that certain antioxidants found in dark leafy green vegetables can indeed help prevent cataracts.



Vitamin manufacturers often add the antioxidants lutein and zeaxanthin to their products, but until now there has been no biochemical evidence to support the claim that these substances help protect the eyes, said Joshua Bomser, a study co-author and an assistant professor of nutrition at Ohio State University. Some studies have suggested that these antioxidants boost eye health.

Results from laboratory experiments on human lens cells showed that lutein and zeaxanthin, antioxidants found in plants such as kale, spinach and collard greens, helped to protect the cells from exposure to ultraviolet light – a leading cause of cataract formation.


The researchers compared the effects of these antioxidants to vitamin E, an antioxidant also thought to reduce the onset of eye diseases. Lutein and zeaxanthin were nearly 10 times more powerful than vitamin E in protecting the cells from UV-induced damage.

Nearly 20 million people in the United States suffer from cataracts – a condition where the lens of the eye clouds over, making it difficult or nearly impossible to see. Current treatment is expensive and involves a surgical procedure that is performed more than 1.5 million times each year at an estimated cost of $3.4 billion.

"Along with the many environmental, lifestyle and genetic risk factors associated with cataracts, exposure to ultraviolet radiation from sunlight and oxidative stress appear to be the most relevant in this disease," Bomser said. "Our results are the first to provide physical evidence suggesting that lutein and zeaxanthin decrease damage caused by ultraviolet radiation."

The study appears in the current issue of the Journal of Nutrition.

The researchers treated human eye lens cells with varying concentrations of lutein, zeaxanthin or vitamin E. They then exposed these cells, along with a batch of untreated cells, to doses of ultraviolet-beta radiation for 10 seconds. UVB radiation is thought to be the primary environmental culprit in causing skin cancer as well as initiating cataract disease. "The dose of UVB radiation we used on the cells is about the same amount a person receives when they get a mild tan," Bomser said.

Adding lutein and zeaxanthin to the cell cultures provided double the protection from UVB damage – these antioxidants reduced signs of damage by 50 to 60 percent, compared to vitamin E, which reduced the same signs of damage by 25 to 32 percent.

The researchers also found that it took far less lutein and zeaxanthin as vitamin E – about 10 times less – to get this protective effect. "The lens is equipped with antioxidant defense mechanisms designed to guard against the harmful effects of ultraviolet radiation and oxidative stress," Bomser said. "In addition to protective enzymes and compounds like vitamins C and E, we think that low concentrations of lutein and zeaxanthin in the eye lens help shield the eye from the harmful effects of UVB radiation."

What researchers don’t know, however, is how these two antioxidants get into the eye. It’s what Bomser hopes to learn next. "Lutein and zeaxanthin accumulate in the retina and in the lens of the eye, but we’re not sure how they reach the eye in the first place," he said. "They travel through the bloodstream, but the lens doesn’t have a blood supply."

This work was supported in part by the Ohio Agricultural Research and Development Center and the Virginia Vivian Scholarship Fund of Ohio State’s College of Human Ecology.

Bomser conducted the research with Ohio State colleagues Mark Failla, professor and chair of nutrition, Chureeporn "Julie" Chitchumroonchockchai and Jayme Glamm.

Joshua Bomser | EurekAlert!
Further information:
http://www.ohio-state.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>