Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VGTI researchers help uncover why aging reduces immune system function

03.12.2004


The current flu vaccine shortage demonstrates the importance of better protecting the elderly against disease.



Scientists at the Vaccine and Gene Therapy Institute at Oregon Health & Science University have made a discovery that helps explain why our immune system worsens with age. The work was led by Janko Nikolich-Zugich, M.D., Ph.D., a senior scientist at the VGTI. The scientists hope this new information can be used to better protect the elderly from infectious diseases by finding ways to slow or stop the degradation of the immune system. The research results are printed in the current edition of the Journal of Experimental Medicine.

"One of the major components of the immune system are T cells, a form of white blood cell. These cells are programmed to look for certain kinds of disease-causing pathogens, then destroy them and the cells infected by them," said Nikolich-Zugich who also serves as a professor of molecular microbiology and immunology in the OHSU School of Medicine, and is a senior scientist at the OHSU Oregon National Primate Research Center. "Throughout our lives, we have a very diverse population of T cells in our bodies. However, late in life this T cell population becomes less diverse, potentially resulting in a higher level of susceptibility to disease. We think we have found one of the key reasons behind this age-related susceptibility."


Specifically, in old age, the number of CD8 T cells diminishes. CD8 T cells have two functions: to recognize and destroy abnormal or infected cells, and to suppress the activity of other white blood cells to protect normal tissue. The scientists believe that late in life a different kind of CD8 T cell is increasingly produced by the body. These cells, called T cell clonal expansions (TCE), are less effective in fighting disease They also have the ability to accumulate quickly as they have a prolonged lifespan and can avoid normal elimination in the organism.

In the end, these TCE cells can grow to become more than 80 percent of the total CD8 population. The accumulation of this one type of cell takes away valuable space from other cells, resulting in an immune system that is less diverse and thus less capable in effectively locating and eliminating pathogens.

To conduct the research, scientists at the VGTI studied mice, which have immune system function very similar to humans. The scientists found the aging mice to have greater TCE levels than normal mice, a less diverse population of CD8 T cells and reduced ability to fight disease. In addition, the scientists were able to show that increasing TCE cells in a normal, healthy mouse reduces that animal’s ability to fight disease.

"While this work is still in the early stages, we think it might be of great value," explained Nikolich-Zugich. "If we can find ways to limit the production of TCE in the aging, we might be able to keep their immune systems strong and better able to fight disease. To provide a real-life example: A flu vaccine shortage like the one we are witnessing might be less concerning if elderly Americans were made less susceptible."

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>