Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early detection reduces threat of foot injury in college basketball players

02.12.2004


Early identification of potential stress fractures with magnetic resonance imaging (MRI) can reduce the threat of season-ending injuries for college basketball players, according to a Duke University Medical Center radiologist.

The findings -- based on the study of 26 male college basketball players -- suggest that such diagnostic work should perhaps be included as a standard part of physical examinations for male and female basketball players, who regularly place considerable stress on their feet, said Duke radiologist Nancy Major, M.D. Other athletes whose sport or training regimen puts similar stresses on bones of the feet might also stand to benefit from the MRI evaluation, she added.

Further study is warranted to consider the policy implications of such a practice, she added. The MRI screening would not be recommended for people who participate in such sports on a casual or more limited basis. "When diagnostic work is conducted pre-season, at-risk players are more likely to be identified, receive treatment and ultimately play the entire year instead of losing eight to 12 weeks on the bench," Major said.



Major presented her findings at the annual meeting of the Radiological Society of North America in Chicago on Dec. 2, 2004.

A stress fracture is a small crack in a bone brought on by overuse or repeated impact on a hard surface over a long period of time, Major said. The muscles that absorb the shock of the impact eventually become fatigued, diverting much of the stress to the underlying bone. If the injury goes undetected, more serious stress fractures can occur, resulting in chronic problems or the need for surgery. For top college athletes, such an injury can mean the end of a season or even of a career, she added.

"Stress fractures of the foot are extremely common in college basketball players," Major said. "The combined repetitive jumping and landing required of players often results in these injuries, causing players to be benched during the long recovery period." Each year, several National Collegiate Athletic Association (NCAA) male basketball players typically suffer stress fractures of the fifth metatarsal – the foot bone most vulnerable to stress fracture, Major noted.

An abundance of fluid known as bone marrow edema frequently precedes fractures of the fifth metatarsal, which runs from the mid-foot to the base of the small toe, she explained. Signal abnormalities on an MRI highlight the edema before fractures become symptomatic. The study examined 26 college basketball players prior to the 2003 NCAA season. Only one of the 14 male players from Duke University and 12 from North Carolina Central University exhibited symptoms prior to examination. Of the 52 feet studied via MRI, 19 (36.5 percent) exhibited some form of abnormality, ranging from soft tissue changes in joint areas to abnormalities of the metatarsals, Major reported.

Based on the MRI findings, physicians provided custom-fit shoe supports and other external bracing devices known as orthotics, as well as other therapies, to prevent injury in two athletes. One player included in the MRI study avoided surgery through a combination of supports and bone stimulation, Major said. Adjustments to an existing orthotic provided immediate relief for a second player who had pre-existing symptoms. A third player developed a stress fracture before he could be fitted for a support.

Earlier research at Duke found that such preventative action appears to relieve the constant stresses and pressures suffered by the fifth metatarsal, thereby preventing further debilitating injuries. Orthotics may also prevent existing stress fractures from becoming complete fractures, Major added.

"By looking at athletes individually with MRI, physicians can evaluate, institute appropriate therapy and document potential problems for further evaluation," Major said.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>