Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early detection reduces threat of foot injury in college basketball players


Early identification of potential stress fractures with magnetic resonance imaging (MRI) can reduce the threat of season-ending injuries for college basketball players, according to a Duke University Medical Center radiologist.

The findings -- based on the study of 26 male college basketball players -- suggest that such diagnostic work should perhaps be included as a standard part of physical examinations for male and female basketball players, who regularly place considerable stress on their feet, said Duke radiologist Nancy Major, M.D. Other athletes whose sport or training regimen puts similar stresses on bones of the feet might also stand to benefit from the MRI evaluation, she added.

Further study is warranted to consider the policy implications of such a practice, she added. The MRI screening would not be recommended for people who participate in such sports on a casual or more limited basis. "When diagnostic work is conducted pre-season, at-risk players are more likely to be identified, receive treatment and ultimately play the entire year instead of losing eight to 12 weeks on the bench," Major said.

Major presented her findings at the annual meeting of the Radiological Society of North America in Chicago on Dec. 2, 2004.

A stress fracture is a small crack in a bone brought on by overuse or repeated impact on a hard surface over a long period of time, Major said. The muscles that absorb the shock of the impact eventually become fatigued, diverting much of the stress to the underlying bone. If the injury goes undetected, more serious stress fractures can occur, resulting in chronic problems or the need for surgery. For top college athletes, such an injury can mean the end of a season or even of a career, she added.

"Stress fractures of the foot are extremely common in college basketball players," Major said. "The combined repetitive jumping and landing required of players often results in these injuries, causing players to be benched during the long recovery period." Each year, several National Collegiate Athletic Association (NCAA) male basketball players typically suffer stress fractures of the fifth metatarsal – the foot bone most vulnerable to stress fracture, Major noted.

An abundance of fluid known as bone marrow edema frequently precedes fractures of the fifth metatarsal, which runs from the mid-foot to the base of the small toe, she explained. Signal abnormalities on an MRI highlight the edema before fractures become symptomatic. The study examined 26 college basketball players prior to the 2003 NCAA season. Only one of the 14 male players from Duke University and 12 from North Carolina Central University exhibited symptoms prior to examination. Of the 52 feet studied via MRI, 19 (36.5 percent) exhibited some form of abnormality, ranging from soft tissue changes in joint areas to abnormalities of the metatarsals, Major reported.

Based on the MRI findings, physicians provided custom-fit shoe supports and other external bracing devices known as orthotics, as well as other therapies, to prevent injury in two athletes. One player included in the MRI study avoided surgery through a combination of supports and bone stimulation, Major said. Adjustments to an existing orthotic provided immediate relief for a second player who had pre-existing symptoms. A third player developed a stress fracture before he could be fitted for a support.

Earlier research at Duke found that such preventative action appears to relieve the constant stresses and pressures suffered by the fifth metatarsal, thereby preventing further debilitating injuries. Orthotics may also prevent existing stress fractures from becoming complete fractures, Major added.

"By looking at athletes individually with MRI, physicians can evaluate, institute appropriate therapy and document potential problems for further evaluation," Major said.

Kendall Morgan | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>