Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccination with anthrax capsule protects against experimental infection in animals

01.12.2004


Vaccination with the anthrax capsule, a naturally occurring component of the bacterium that causes the disease, protected mice from lethal anthrax infection, according to scientists at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). In addition, the capsule enhanced the effects of protective antigen (PA), the protective component of the current licensed human vaccine. The work was recently published in the journal VACCINE.

According to senior author Arthur M. Friedlander, M.D., Bacillus anthracis, the causative agent of anthrax, produces three main components that allow it to do harm--lethal toxin, edema toxin, and the capsule. During anthrax infection, the bacterium invades and grows to high concentrations in the host. The capsule surrounds the bacterium and prevents it from being ingested by host white blood cells that would otherwise destroy it, thus allowing anthrax infection to progress. The toxins are thought to act mainly by damaging defensive cells called phagocytes, causing the immune system to malfunction.

The efficacy of the current licensed anthrax vaccine, Anthrax Vaccine Adsorbed (AVA), is believed to be based on the presence of PA. Though the exact mechanism of protection is not known, antibodies to PA induced by AVA are believed to play a role in neutralizing the anthrax toxins.



USAMRIID scientists have extensively studied protective antigen, demonstrating that PA alone confers protection in animal challenge studies with both rabbits and nonhuman primates. In addition, the recombinant, highly purified version of PA developed and tested by the Institute is the basis for a next generation anthrax vaccine currently in advanced development.

However, because a response against PA is thought to target the toxins only, there is interest in identifying additional potential anthrax vaccine components that target the whole organism. According to Friedlander, scientists have suspected for some time that the anthrax capsule plays a role in conferring protection. This study provides the first definitive proof of that concept.

The research team vaccinated several groups of mice. One month after the second dose, the mice were challenged with lethal doses of spores from a strain of anthrax producing only the capsule. In the group that had received the capsule vaccine, 7 of 12 mice survived challenge. In the control group, which received injections of a placebo instead of the capsule vaccine, none of the 12 mice survived.

Next, the team evaluated the efficacy of capsule vaccines alone or in combination with PA, using the same dosage schedule as before. In this experiment, using a fully virulent strain producing both capsule and toxins, neither capsule nor PA alone protected while the combination vaccine resulted in survival of 9 of 11 mice. "We demonstrated that protection was even greater when the capsule was combined with PA, compared to when PA was given alone," Friedlander said. "A different formulation could make it even better. The next step will be testing in additional animal models."

Friedlander’s colleagues on the study were Donald J. Chabot, Angelo Scorpio, Steven A. Tobery, Stephen F. Little, and Sarah L. Norris. "This work shows the importance of developing vaccines that target multiple agent-specific targets," said George V. Ludwig, Ph.D., interim science director for USAMRIID. "This helps reduce the possibility of technological surprise when dealing with emerging biological threats."

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>