Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccination with anthrax capsule protects against experimental infection in animals

01.12.2004


Vaccination with the anthrax capsule, a naturally occurring component of the bacterium that causes the disease, protected mice from lethal anthrax infection, according to scientists at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). In addition, the capsule enhanced the effects of protective antigen (PA), the protective component of the current licensed human vaccine. The work was recently published in the journal VACCINE.

According to senior author Arthur M. Friedlander, M.D., Bacillus anthracis, the causative agent of anthrax, produces three main components that allow it to do harm--lethal toxin, edema toxin, and the capsule. During anthrax infection, the bacterium invades and grows to high concentrations in the host. The capsule surrounds the bacterium and prevents it from being ingested by host white blood cells that would otherwise destroy it, thus allowing anthrax infection to progress. The toxins are thought to act mainly by damaging defensive cells called phagocytes, causing the immune system to malfunction.

The efficacy of the current licensed anthrax vaccine, Anthrax Vaccine Adsorbed (AVA), is believed to be based on the presence of PA. Though the exact mechanism of protection is not known, antibodies to PA induced by AVA are believed to play a role in neutralizing the anthrax toxins.



USAMRIID scientists have extensively studied protective antigen, demonstrating that PA alone confers protection in animal challenge studies with both rabbits and nonhuman primates. In addition, the recombinant, highly purified version of PA developed and tested by the Institute is the basis for a next generation anthrax vaccine currently in advanced development.

However, because a response against PA is thought to target the toxins only, there is interest in identifying additional potential anthrax vaccine components that target the whole organism. According to Friedlander, scientists have suspected for some time that the anthrax capsule plays a role in conferring protection. This study provides the first definitive proof of that concept.

The research team vaccinated several groups of mice. One month after the second dose, the mice were challenged with lethal doses of spores from a strain of anthrax producing only the capsule. In the group that had received the capsule vaccine, 7 of 12 mice survived challenge. In the control group, which received injections of a placebo instead of the capsule vaccine, none of the 12 mice survived.

Next, the team evaluated the efficacy of capsule vaccines alone or in combination with PA, using the same dosage schedule as before. In this experiment, using a fully virulent strain producing both capsule and toxins, neither capsule nor PA alone protected while the combination vaccine resulted in survival of 9 of 11 mice. "We demonstrated that protection was even greater when the capsule was combined with PA, compared to when PA was given alone," Friedlander said. "A different formulation could make it even better. The next step will be testing in additional animal models."

Friedlander’s colleagues on the study were Donald J. Chabot, Angelo Scorpio, Steven A. Tobery, Stephen F. Little, and Sarah L. Norris. "This work shows the importance of developing vaccines that target multiple agent-specific targets," said George V. Ludwig, Ph.D., interim science director for USAMRIID. "This helps reduce the possibility of technological surprise when dealing with emerging biological threats."

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>