Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic discovers potential marker for aggressive kidney cancer


New help for tailoring treatments

Mayo Clinic researchers have discovered a key molecule that lets doctors identify one of the most aggressive types of kidney cancer. Patients with renal cell carcinoma who have higher levels of a molecule known as B7-H1 in their tumors are nearly five times more likely to die from the disease than patients with low levels or an absence of the molecule.

This key finding can help to improve treatment of the disease, or to serve as a target for new therapies. The findings are published in today’s online issue of the Proceedings of the National Academy of Sciences,

Significance of the Mayo Clinic Research

  • This is the first time this molecule has been demonstrated to be expressed on kidney cancers. Prior to the Mayo Clinic investigation researchers knew that B7-H1 is usually found on immune cells and is found in some other cancers, but is not found on the healthy kidney.
  • When B7-H1 is expressed, it shuts down the immune system, limiting the body’s ability to attack the tumor and perhaps increasing a tumor’s ability to grow and spread.
  • This is the first time that this kind of molecule has been correlated with clinical cancer progression and risk of death.

"Many people have hypothesized that if a cancer makes B7-H1, that cancer may be more aggressive because B7-H1 knocks down the host’s immune system, thereby permitting the tumor to grow without interference from the immune system," explains Eugene Kwon, M.D., the immunologist and urologist who led the study. "But there has been no evidence at the clinical level to demonstrate tumors that express B7-H1 are aggressive, so there’s been no way to prove this hypothesis."

Dr. Kwon’s group studied 196 samples from kidney tumors of patients treated at Mayo Clinic. They found that when patients express this molecule on their kidney cancer cells, they are at markedly increased risk both of the cancer spreading, and of dying from the cancer. "We found that when you have high levels of this molecule, your risk of dying from this cancer goes up almost five-fold," Dr. Kwon says.

Implications of Research

This molecule seems suited to be used as a biomarker by physicians to determine prognosis, according to the Mayo researchers. High levels of the molecule would indicate a poor prognosis, while low levels or its absence would suggest a good prognosis. The level of this molecule could also be used to help select the most effective treatments. For example, it’s possible that patients with high levels of B7-H1 may be the best candidates for immunotherapeutic treatment using agents such as Interleukin-2 (IL-2) and alpha interferon.

Furthermore, say the researchers, a drug developed to block B7-H1 could theoretically be created to improve the effectiveness of immunotherapy. For instance, an antibody could be developed that would bind B7-H1 and block its function. By doing so, either alone or in combination with standard therapy, this would potentially improve treatment responses of patients with kidney cancers by protecting their immune system from being shut down.

About Kidney Cancer

There are different kinds of kidney cancers. Renal cell carcinoma accounts for approximately 85 percent of all kidney cancers. In the United States, an estimated 35,000 patients will be diagnosed with kidney cancer and approximately 12,000 will die from this disease every year. It is the eighth most common cancer in men and the 10th most common cancer in women. In the United States, it is the sixth leading cause of cancer death.

The primary treatment for advanced kidney cancer -- Interleukin 2 -- has significant limitations. It is relatively toxic, can further sicken the patient and only elicits a response in 15-20 percent of all patients treated. This means 80-85 percent of patients are not significantly helped by it, but nonetheless exposed to its toxicity.

"That’s why we’re so interested in this molecule," says Dr. Kwon. "We think that by recognizing that B7-H1 may be an immune-suppressive molecule, we might be able to make patients much more receptive or responsive to immunotherapy using either IL-2 or some of the other agents that are out there just by manipulating B7-H1 appropriately. We could improve treatment outcomes, hopefully, and that’s what’s drastically needed for this disease."

Bob Nellis | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>