Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Lighter than air’ breathing more than doubles COPD patients’ exercise endurance

30.11.2004


Helium/oxygen mixture reduces airflow limitations, lung dynamic hyperinflation and sensation of ’shortness of breath’



It certainly makes sense: COPD sufferers have varying degrees of serious breathing difficulties, which keeps them from almost any kind of exercise, especially in advanced stages. So maybe "lighter than air" air would be easier to breath, reduce shortness of breath and perhaps even allow them to do some exercise with all of its physical and mental benefits.

A group of Italian researchers reports in the November issue of the Journal of Applied Physiology that while breathing a low-density mixture of 79% helium and 21% oxygen (called heliox), the length of time that 12 COPD patients could do real exercise was 9 minutes, versus only 4.2 minutes for 12 patients breathing regular air (79% nitrogen/21% oxygen). And the exercise involved wasn’t trivial: The subjects cycled "until exhaustion" at a rate of 50 rpm at 80% of their maximal rate measured several days earlier while on air.


COPD: 4th leading cause of death in world and U.S., and rising

The World Health Organization estimates that chronic obstructive pulmonary disease (COPD, defined as emphysema and chronic bronchitis) as a single cause of death around the world shares fourth place with HIV/AIDS, following coronary heart disease, cerebrovascular disease and acute respiratory infection. WHO estimates that 2,740,000 people died of COPD worldwide in 2000; cigarette smoking is blamed for about 85% of cases.

According to the National Heart, Lung, and Blood Institute (NHLBI), COPD is the fourth leading cause of death in the U.S. and is projected to rise to third place for both men and women by the year 2020. NHLBI says 12.1 million Americans 25 and older were diagnosed with COPD in 2001. Estimated cost of COPD in 2002 was $32.1 billion, of which $18 billion were direct costs.

COPD is characterized by shortness of breath (dyspnea) and exercise intolerance. Among severely affected patients, especially those with emphysema, the inability to exercise or even to move small distances is mostly due to limits on "breathing out" because of limited expiratory flow, and early onset of dyspnea.

Heliox appears to positively change multitude of lung mechanics

In the current study, the more than doubling in the time COPD patients could exercise "was associated with a significant reduction in lung dynamic hyperinflation (DH) at isotime (Iso; when the patients stopped exercising during regular air breathing), as reflected by the increase in inspiratory capacity (IC) to 1.97 from 1.77 liters and a decrease in dyspnea" scoring to 6 from 8.

The researchers said that "heliox induced a state of relative hyperventilation as reflected by the increase in minute ventilation" to 38.3 versus 35.5 liters, and minute ventilation over carbon dioxide output to 36.3 versus 33.9 at peak exercise, and by the reduction in arterial partial pressure of carbon dioxide at Iso to 44 from 48 and at peak exercise to 46 from 48.

The study, "Effect of heliox on lung dynamic hyperinflation, dyspnea, and exercise endurance capacity in COPD patients," was conducted by Paolo Palange, Gabriele Valli, Paolo Onorati, Rosa Antonucci, Patrizia Paoletti, Alessia Rosato, Felice Manfredi, and Pietro Serra from Dipartmento di Medicina Clinica, Servizio di Fisiopatologia Respiratoria, Università "La Sapienza," Rome, Italy.

Palange et al. says the "most likely explanation for our finding is that heliox improved maximal expiratory flow and maximal ventilatory capacity, as reflected by the increase in resting forced expiratory volume and by the increase in tidal volume, mean expiratory flow, and minute ventilation at peak exercise. Importantly, the improvement in maximal expiratory flow determined a significant reduction in lung dynamic hyperinflation and dyspnea, as reflected by the significant increase in inspiratory capacity (IC), inspiratory reserve volume and IC/minute ventilation, and decrease in dyspnea at Iso.

"All of these positive changes in lung mechanics allowed the patients to markedly improve exercise endurance time," they note.

And finally, "it is likely that the exercise protocol used, capable of inducing high levels of ventilation relative to subject’s maximal ventilation for a prolonged period of time, has amplified the effect of heliox breathing in reducing turbulent airway resistances," the authors say. In a related observation, they believe that "the high-intensity constant work rate test utilized allowed us to clearly detect the beneficial effect of small changes in lung mechanics induced by heliox breathing on exercise capacity."

Next steps

The authors conclude that "heliox breathing, by reducing airflow limitations, lung dynamic hyperinflation and dyspnea sensation, is capable of improving high-intensity exercise endurance capacity in moderate to severe COPD patients." However, they note that "further studies are needed to verify the potential role of heliox supplementation during exercise rehabilitation programs in COPD patients."

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>