Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Lighter than air’ breathing more than doubles COPD patients’ exercise endurance

30.11.2004


Helium/oxygen mixture reduces airflow limitations, lung dynamic hyperinflation and sensation of ’shortness of breath’



It certainly makes sense: COPD sufferers have varying degrees of serious breathing difficulties, which keeps them from almost any kind of exercise, especially in advanced stages. So maybe "lighter than air" air would be easier to breath, reduce shortness of breath and perhaps even allow them to do some exercise with all of its physical and mental benefits.

A group of Italian researchers reports in the November issue of the Journal of Applied Physiology that while breathing a low-density mixture of 79% helium and 21% oxygen (called heliox), the length of time that 12 COPD patients could do real exercise was 9 minutes, versus only 4.2 minutes for 12 patients breathing regular air (79% nitrogen/21% oxygen). And the exercise involved wasn’t trivial: The subjects cycled "until exhaustion" at a rate of 50 rpm at 80% of their maximal rate measured several days earlier while on air.


COPD: 4th leading cause of death in world and U.S., and rising

The World Health Organization estimates that chronic obstructive pulmonary disease (COPD, defined as emphysema and chronic bronchitis) as a single cause of death around the world shares fourth place with HIV/AIDS, following coronary heart disease, cerebrovascular disease and acute respiratory infection. WHO estimates that 2,740,000 people died of COPD worldwide in 2000; cigarette smoking is blamed for about 85% of cases.

According to the National Heart, Lung, and Blood Institute (NHLBI), COPD is the fourth leading cause of death in the U.S. and is projected to rise to third place for both men and women by the year 2020. NHLBI says 12.1 million Americans 25 and older were diagnosed with COPD in 2001. Estimated cost of COPD in 2002 was $32.1 billion, of which $18 billion were direct costs.

COPD is characterized by shortness of breath (dyspnea) and exercise intolerance. Among severely affected patients, especially those with emphysema, the inability to exercise or even to move small distances is mostly due to limits on "breathing out" because of limited expiratory flow, and early onset of dyspnea.

Heliox appears to positively change multitude of lung mechanics

In the current study, the more than doubling in the time COPD patients could exercise "was associated with a significant reduction in lung dynamic hyperinflation (DH) at isotime (Iso; when the patients stopped exercising during regular air breathing), as reflected by the increase in inspiratory capacity (IC) to 1.97 from 1.77 liters and a decrease in dyspnea" scoring to 6 from 8.

The researchers said that "heliox induced a state of relative hyperventilation as reflected by the increase in minute ventilation" to 38.3 versus 35.5 liters, and minute ventilation over carbon dioxide output to 36.3 versus 33.9 at peak exercise, and by the reduction in arterial partial pressure of carbon dioxide at Iso to 44 from 48 and at peak exercise to 46 from 48.

The study, "Effect of heliox on lung dynamic hyperinflation, dyspnea, and exercise endurance capacity in COPD patients," was conducted by Paolo Palange, Gabriele Valli, Paolo Onorati, Rosa Antonucci, Patrizia Paoletti, Alessia Rosato, Felice Manfredi, and Pietro Serra from Dipartmento di Medicina Clinica, Servizio di Fisiopatologia Respiratoria, Università "La Sapienza," Rome, Italy.

Palange et al. says the "most likely explanation for our finding is that heliox improved maximal expiratory flow and maximal ventilatory capacity, as reflected by the increase in resting forced expiratory volume and by the increase in tidal volume, mean expiratory flow, and minute ventilation at peak exercise. Importantly, the improvement in maximal expiratory flow determined a significant reduction in lung dynamic hyperinflation and dyspnea, as reflected by the significant increase in inspiratory capacity (IC), inspiratory reserve volume and IC/minute ventilation, and decrease in dyspnea at Iso.

"All of these positive changes in lung mechanics allowed the patients to markedly improve exercise endurance time," they note.

And finally, "it is likely that the exercise protocol used, capable of inducing high levels of ventilation relative to subject’s maximal ventilation for a prolonged period of time, has amplified the effect of heliox breathing in reducing turbulent airway resistances," the authors say. In a related observation, they believe that "the high-intensity constant work rate test utilized allowed us to clearly detect the beneficial effect of small changes in lung mechanics induced by heliox breathing on exercise capacity."

Next steps

The authors conclude that "heliox breathing, by reducing airflow limitations, lung dynamic hyperinflation and dyspnea sensation, is capable of improving high-intensity exercise endurance capacity in moderate to severe COPD patients." However, they note that "further studies are needed to verify the potential role of heliox supplementation during exercise rehabilitation programs in COPD patients."

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>