Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Lighter than air’ breathing more than doubles COPD patients’ exercise endurance

30.11.2004


Helium/oxygen mixture reduces airflow limitations, lung dynamic hyperinflation and sensation of ’shortness of breath’



It certainly makes sense: COPD sufferers have varying degrees of serious breathing difficulties, which keeps them from almost any kind of exercise, especially in advanced stages. So maybe "lighter than air" air would be easier to breath, reduce shortness of breath and perhaps even allow them to do some exercise with all of its physical and mental benefits.

A group of Italian researchers reports in the November issue of the Journal of Applied Physiology that while breathing a low-density mixture of 79% helium and 21% oxygen (called heliox), the length of time that 12 COPD patients could do real exercise was 9 minutes, versus only 4.2 minutes for 12 patients breathing regular air (79% nitrogen/21% oxygen). And the exercise involved wasn’t trivial: The subjects cycled "until exhaustion" at a rate of 50 rpm at 80% of their maximal rate measured several days earlier while on air.


COPD: 4th leading cause of death in world and U.S., and rising

The World Health Organization estimates that chronic obstructive pulmonary disease (COPD, defined as emphysema and chronic bronchitis) as a single cause of death around the world shares fourth place with HIV/AIDS, following coronary heart disease, cerebrovascular disease and acute respiratory infection. WHO estimates that 2,740,000 people died of COPD worldwide in 2000; cigarette smoking is blamed for about 85% of cases.

According to the National Heart, Lung, and Blood Institute (NHLBI), COPD is the fourth leading cause of death in the U.S. and is projected to rise to third place for both men and women by the year 2020. NHLBI says 12.1 million Americans 25 and older were diagnosed with COPD in 2001. Estimated cost of COPD in 2002 was $32.1 billion, of which $18 billion were direct costs.

COPD is characterized by shortness of breath (dyspnea) and exercise intolerance. Among severely affected patients, especially those with emphysema, the inability to exercise or even to move small distances is mostly due to limits on "breathing out" because of limited expiratory flow, and early onset of dyspnea.

Heliox appears to positively change multitude of lung mechanics

In the current study, the more than doubling in the time COPD patients could exercise "was associated with a significant reduction in lung dynamic hyperinflation (DH) at isotime (Iso; when the patients stopped exercising during regular air breathing), as reflected by the increase in inspiratory capacity (IC) to 1.97 from 1.77 liters and a decrease in dyspnea" scoring to 6 from 8.

The researchers said that "heliox induced a state of relative hyperventilation as reflected by the increase in minute ventilation" to 38.3 versus 35.5 liters, and minute ventilation over carbon dioxide output to 36.3 versus 33.9 at peak exercise, and by the reduction in arterial partial pressure of carbon dioxide at Iso to 44 from 48 and at peak exercise to 46 from 48.

The study, "Effect of heliox on lung dynamic hyperinflation, dyspnea, and exercise endurance capacity in COPD patients," was conducted by Paolo Palange, Gabriele Valli, Paolo Onorati, Rosa Antonucci, Patrizia Paoletti, Alessia Rosato, Felice Manfredi, and Pietro Serra from Dipartmento di Medicina Clinica, Servizio di Fisiopatologia Respiratoria, Università "La Sapienza," Rome, Italy.

Palange et al. says the "most likely explanation for our finding is that heliox improved maximal expiratory flow and maximal ventilatory capacity, as reflected by the increase in resting forced expiratory volume and by the increase in tidal volume, mean expiratory flow, and minute ventilation at peak exercise. Importantly, the improvement in maximal expiratory flow determined a significant reduction in lung dynamic hyperinflation and dyspnea, as reflected by the significant increase in inspiratory capacity (IC), inspiratory reserve volume and IC/minute ventilation, and decrease in dyspnea at Iso.

"All of these positive changes in lung mechanics allowed the patients to markedly improve exercise endurance time," they note.

And finally, "it is likely that the exercise protocol used, capable of inducing high levels of ventilation relative to subject’s maximal ventilation for a prolonged period of time, has amplified the effect of heliox breathing in reducing turbulent airway resistances," the authors say. In a related observation, they believe that "the high-intensity constant work rate test utilized allowed us to clearly detect the beneficial effect of small changes in lung mechanics induced by heliox breathing on exercise capacity."

Next steps

The authors conclude that "heliox breathing, by reducing airflow limitations, lung dynamic hyperinflation and dyspnea sensation, is capable of improving high-intensity exercise endurance capacity in moderate to severe COPD patients." However, they note that "further studies are needed to verify the potential role of heliox supplementation during exercise rehabilitation programs in COPD patients."

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>