Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Lighter than air’ breathing more than doubles COPD patients’ exercise endurance

30.11.2004


Helium/oxygen mixture reduces airflow limitations, lung dynamic hyperinflation and sensation of ’shortness of breath’



It certainly makes sense: COPD sufferers have varying degrees of serious breathing difficulties, which keeps them from almost any kind of exercise, especially in advanced stages. So maybe "lighter than air" air would be easier to breath, reduce shortness of breath and perhaps even allow them to do some exercise with all of its physical and mental benefits.

A group of Italian researchers reports in the November issue of the Journal of Applied Physiology that while breathing a low-density mixture of 79% helium and 21% oxygen (called heliox), the length of time that 12 COPD patients could do real exercise was 9 minutes, versus only 4.2 minutes for 12 patients breathing regular air (79% nitrogen/21% oxygen). And the exercise involved wasn’t trivial: The subjects cycled "until exhaustion" at a rate of 50 rpm at 80% of their maximal rate measured several days earlier while on air.


COPD: 4th leading cause of death in world and U.S., and rising

The World Health Organization estimates that chronic obstructive pulmonary disease (COPD, defined as emphysema and chronic bronchitis) as a single cause of death around the world shares fourth place with HIV/AIDS, following coronary heart disease, cerebrovascular disease and acute respiratory infection. WHO estimates that 2,740,000 people died of COPD worldwide in 2000; cigarette smoking is blamed for about 85% of cases.

According to the National Heart, Lung, and Blood Institute (NHLBI), COPD is the fourth leading cause of death in the U.S. and is projected to rise to third place for both men and women by the year 2020. NHLBI says 12.1 million Americans 25 and older were diagnosed with COPD in 2001. Estimated cost of COPD in 2002 was $32.1 billion, of which $18 billion were direct costs.

COPD is characterized by shortness of breath (dyspnea) and exercise intolerance. Among severely affected patients, especially those with emphysema, the inability to exercise or even to move small distances is mostly due to limits on "breathing out" because of limited expiratory flow, and early onset of dyspnea.

Heliox appears to positively change multitude of lung mechanics

In the current study, the more than doubling in the time COPD patients could exercise "was associated with a significant reduction in lung dynamic hyperinflation (DH) at isotime (Iso; when the patients stopped exercising during regular air breathing), as reflected by the increase in inspiratory capacity (IC) to 1.97 from 1.77 liters and a decrease in dyspnea" scoring to 6 from 8.

The researchers said that "heliox induced a state of relative hyperventilation as reflected by the increase in minute ventilation" to 38.3 versus 35.5 liters, and minute ventilation over carbon dioxide output to 36.3 versus 33.9 at peak exercise, and by the reduction in arterial partial pressure of carbon dioxide at Iso to 44 from 48 and at peak exercise to 46 from 48.

The study, "Effect of heliox on lung dynamic hyperinflation, dyspnea, and exercise endurance capacity in COPD patients," was conducted by Paolo Palange, Gabriele Valli, Paolo Onorati, Rosa Antonucci, Patrizia Paoletti, Alessia Rosato, Felice Manfredi, and Pietro Serra from Dipartmento di Medicina Clinica, Servizio di Fisiopatologia Respiratoria, Università "La Sapienza," Rome, Italy.

Palange et al. says the "most likely explanation for our finding is that heliox improved maximal expiratory flow and maximal ventilatory capacity, as reflected by the increase in resting forced expiratory volume and by the increase in tidal volume, mean expiratory flow, and minute ventilation at peak exercise. Importantly, the improvement in maximal expiratory flow determined a significant reduction in lung dynamic hyperinflation and dyspnea, as reflected by the significant increase in inspiratory capacity (IC), inspiratory reserve volume and IC/minute ventilation, and decrease in dyspnea at Iso.

"All of these positive changes in lung mechanics allowed the patients to markedly improve exercise endurance time," they note.

And finally, "it is likely that the exercise protocol used, capable of inducing high levels of ventilation relative to subject’s maximal ventilation for a prolonged period of time, has amplified the effect of heliox breathing in reducing turbulent airway resistances," the authors say. In a related observation, they believe that "the high-intensity constant work rate test utilized allowed us to clearly detect the beneficial effect of small changes in lung mechanics induced by heliox breathing on exercise capacity."

Next steps

The authors conclude that "heliox breathing, by reducing airflow limitations, lung dynamic hyperinflation and dyspnea sensation, is capable of improving high-intensity exercise endurance capacity in moderate to severe COPD patients." However, they note that "further studies are needed to verify the potential role of heliox supplementation during exercise rehabilitation programs in COPD patients."

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>