Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brains of people with autism recall letters of the alphabet in brain areas dealing with shapes

30.11.2004


Finding supports theory that autism results from failure of brain areas to work together



In contrast to people who do not have autism, people with autism remember letters of the alphabet in a part of the brain that ordinarily processes shapes, according to a study from a collaborative program of the National Institute of Child Health and Human Development of the National Institutes of Health.

The study was conducted by researchers in the NICHD Collaborative Program of Excellence in Autism (CPEA) at the University of Pittsburgh and Carnegie Mellon University. It supports a theory by CPEA scientists that autism results from a failure of the various parts of the brain to work together. In autism, the theory holds, these distinct brain areas tend to work independently of each other. The theory accounts for observations that while many people with autism excel at tasks involving details, they have difficulty with more complex information.


The study and the theory are the work of Marcel Just, Ph.D., Professor of Psychology at Carnegie Mellon University in Pittsburgh, Pennsylvania and Nancy Minshew, M.D., Professor of Psychiatry and Neurology at the University of Pittsburgh School of Medicine and their colleagues.

The study is scheduled for on-line publication November 29 in the journal Neuroimage, at http://www.sciencedirect.com. "This finding provides more evidence to support a promising theory of autism," said Duane Alexander, M.D., Director of the NICHD. "If confirmed, this theory suggests that therapies emphasizing problem solving skills and other tasks that activate multiple brain areas at the same time might benefit people with autism."

People with autism typically have difficulty communicating and interacting socially with others. The old saying "unable to see the forest for the trees" applies to people with autism, describing how many of them excel at matters of detail, yet struggle to comprehend the larger picture. For example, some children with autism may become champions at spelling bees, but have difficulty understanding the meaning of a sentence or a story. "The language pattern in autism is a microcosm for the disorder," Dr. Just said. "People with autism are good at a lower level of analysis but have a deficit at the higher level."

In the current study, the researchers used a brain imaging technique known as functional magnetic resonance imaging (fMRI) to measure the brain activity of 14 individuals with high functioning autism while they performed a simple memory task involving letters of the alphabet. Specifically, the study volunteers were shown a sequence of letters. After each letter, they were asked to name the letter that preceded it. In some cases, they were asked to name the letter that appeared two letters previously. The autism volunteers’ brain activation patterns were compared to a control group of people who did not have autism, but were of a similar age and I.Q. level.

Both groups successfully completed the task. However, the fMRI scans revealed different brain activation patterns between the two groups. Compared to the control group, the volunteers with autism showed more activation in the right hemisphere, or half, of the brain, and less activation in the left hemisphere. The left hemisphere takes the lead in processing letters, words and sentences, whereas the right hemisphere plays a larger role in processing shapes and visual information.

Dr. Just said that the brain could interpret letters either spatially, as geometric shapes, or linguistically, by the names of the letters. The imaging data indicated that the volunteers with autism remembered letters as shapes, while the control group remembered them by their names.

The brain activation patterns of the two groups also differed in other ways. While performing the task, the group with autism showed less activation in the anterior, or front, parts of the brain, and more activation in the posterior, or rear parts of the brain. Dr. Just explained that the brain’s anterior portions carry out higher-level thinking and reasoning while the posterior portion is more involved with perceiving details.

Compared to the control group, the different brain areas of the people with autism were less likely to work in synchrony (at the same time) while recalling the letters. Such synchronization between brain areas takes place during many kinds of higher-level thinking and analysis that prove difficult for many people with autism.

These current findings provide evidence in support of the theory developed by these researchers. Called the theory of underconnectivity in autism, it maintains that autism results from a failure of the brain’s neurological wiring--the fibers of nervous system tissue that interconnect the individual parts of the brain. Deprived of effective connections, the different brain areas must work independently, sometimes performing at a higher level individually than they do in people who do not have autism. This may allow some people with autism to excel at spelling and other detail-oriented tasks but make it difficult for them to comprehend more complex material.

The researchers published their theory in the July issue of Brain, in conjunction with the results of another fMRI study of volunteers with autism. In that study, volunteers were asked a question about a simple sentence that they had just read. When the people with autism performed the task, their brains showed less synchronization than did the brains of the control group. Moreover, the brains of the group with autism had less activation in an anterior part of the brain that integrates the words of a sentence, and more activation in a posterior brain area that comprehends individual words.

Many behavioral therapies to treat autism stress rote learning, Dr. Minshew explained. Such strategies are helpful, particularly early in a child’s development. However, if the theory of underconnectivity proves valid, therapies that stimulate brain areas to work in synchrony might also offer some benefit. Such therapies might stress problem solving skills and creative thinking, and attempt to foster flexibility in thinking.

Dr. Just noted that more evidence to support the theory might come from the group’s on-going studies of other cognitive abilities. The researchers are attempting to determine if underconnectivity is a general feature of the brain in autism, and are using brain imaging studies to examine the brain’s white matter in people with autism. White matter is the part of the brain that consists of the larger neurological connections spanning different parts of the brain.

Marianne Glass Miller | EurekAlert!
Further information:
http://www.nichd.nih.gov
http://www.sciencedirect.com

More articles from Health and Medicine:

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>