Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotron licenses ORNL cancer treatment technology

24.11.2004


Patients with cancers previously next to untreatable may have new hope because of a license agreement between Isotron of Norcross, Ga., and UT-Battelle, which manages Oak Ridge National Laboratory.



The license allows Isotron to market a treatment called neutron brachytherapy, which enables physicians to deliver a highly concentrated dose of californium-252 neutrons to the site of a tumor instead of having to treat the tumor with conventional gamma rays, which often are not as effective at killing cancer cells. The benefit to patients should be tremendous.

"This new procedure could be used to more effectively treat literally thousands of patients with cancer, including brain tumors, some of which today have five-year survival rates of less than 1 percent," said Manfred Sandler, a cardiologist and chief executive officer of Isotron. "So we see this as an extremely significant development in the race to cure cancer."


Sandler hopes the treatment, which will allow physicians to treat nearly 20 types of cancer, is available by early 2007. Cancers most resistant to conventional treatments include brain tumors, melanoma, sarcoma, certain types of prostate cancer, locally advanced breast cancer, cervical cancer and cancer of the head, neck and mouth.

The key to the new treatment is the miniaturization of the californium-252 source, which allows physicians to insert the radioisotope through a catheter directly to the tumor site. Researchers at Isotron and in ORNL’s Nuclear Science & Technology Division reduced the diameter of the source -- the wire that contains the radioisotope -- by more than half from the previous standard of about 2.8 millimeters. The length has also been significantly reduced. Although the dimensions are much smaller, the strength of the source is significantly higher. This makes it possible to reach and treat tumors that previously could be treated only with conventional photon and gamma brachytherapy or with external beam treatments. In addition, because of the potency of the source, treatment times will be significantly reduced.

Another significant technological challenge involved development of a method for making the source capsules that are attached to the wire that allows for the insertion of the radioisotope. Isotron’s method combines the radioisotope source with a remote automated storage and delivery system that uses the latest imaging, surgical and patient treatment planning techniques.

The licensing agreement, signed earlier this month, is the culmination of a three-year cooperative research and development agreement funded entirely by Isotron. The license grants Isotron rights to two patents detailing how to make miniature californium-252 sources for neutron brachytherapy and how to attach them to small-diameter wires. The work was performed in ORNL’s Californium User Facility.

"This is a perfect example of how collaborations between ORNL and the private sector can result in technology to make our lives better," said Alex Fischer, director of ORNL’s Office of Technology Transfer and Economic Development. "Through this work with Isotron, thousands of people can perhaps be cured of cancer and go on to lead normal lives."

Sandler envisions the treatment being useful for treating many of some 260,000 combined cases of prostate cancer, cervical cancer, brain tumors and melanomas.

ORNL, which is managed by UT-Battelle, employs 1,500 scientists and engineers and is the Department of Energy’s largest multipurpose science and energy laboratory.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>