Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher breaks down cholesterol mystery

24.11.2004


You may not yet have heard of chylomicrons, but a nutritional scientist at the University of Alberta believes you will soon--especially if you care about preventing a stroke or heart attack.



Dr. Spencer Proctor says chylomicrons gather on arterial walls and may be as dangerous or more dangerous than low-density lipoprotein (LDL) cholesterol in causing strokes and heart attacks. "We were the first in the world to label chylomicrons remnants with florescence and visually show that these particles can accumulate in arterial vessels," Proctor said. "Our next goal is to figure out why they get stuck and whether or not they play a significant role in the development of coronary artery disease--our suspicion now is that they do."

Chylomicrons are metabolized balls of fat and cholesterol that enter the blood stream through the intestines after a meal--usually within about 15 minutes after your last bite. However, because chylomicrons are processed so quickly, when a patient gives a blood sample after fasting for 12 hours or more, as per doctors’ usual orders, chylomicron cholesterol will usually comprise just three per cent of all the cholesterol in the sample. LDL cholesterol is the most prevalent type of cholesterol, usually comprising about 70 per cent of all cholesterols found in blood samples taken from patients who have fasted for 12 hours or more.


For this reason, most researchers believe LDL cholesterol, which is produced in the liver and delivered to the rest of the body over a period of days after food is ingested, is the leading culprit among cholesterols in the development of coronary artery disease.

However, researchers have also been at a loss to explain why 40 per cent of people who are highly vulnerable to suffering a stroke or heart attack have low or normal LDL levels. "That’s why we believe chylomicrons and their remnants are the key to solving this problem," said Proctor, whose research is published in the November issue of Arteriosclerosis, Thrombosis and Vascular Biology. "We believe understanding chylomicrons and their metabolism may answer all questions about cholesterol and the role it plays in the development of diabetes, obesity, and other cardiovascular diseases."

Using unique and specially designed imaging tools, Proctor and his colleagues tracked the formation and delivery pathways of chylomicrons in rabbits. Their research showed that chylomicron remnants form smaller lipoproteins, which can build up more quickly in arteries than any other type of cholesterol-carriers, including LDL. "At the moment, not enough is known about chylomicron remnants and their pathways," Proctor said. "As a first goal, I’d like to see a greater awareness among clinicians about the significance of chylomicrons to cardiovascular disease and how to test their metabolism in humans."

"We know that you don’t need to have raised concentrations of LDL to have high levels of chylomicrons," he added. "And it may well be that chylomicrons could be a significant risk factor for developing heart disease and stroke."

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>