Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers align nanotubes to improve artificial joints

24.11.2004


Researchers at Purdue University have shown that artificial joints might be improved by making the implants out of tiny carbon tubes and filaments that are all aligned in the same direction, mimicking the alignment of collagen fibers and natural ceramic crystals in real bones.

The researchers already have shown in a series of experiments that bone cells in Petri dishes attach better to materials that possess smaller surface bumps than are found on conventional materials used to make artificial joints. The smaller features also stimulate the growth of more new bone tissue, which is critical for the proper attachment of artificial joints once they are implanted. Now, the Purdue researchers have shown even more enhanced cell adhesion and growth when so-called "nanotubes" and nanofibers are aligned in the same direction. This orientation is similar to the way collagen and natural ceramic crystals, called hydroxyapatite, are aligned in bone, said Thomas Webster, an assistant professor of biomedical engineering at Purdue.

Findings were presented at two recent scientific conferences in research papers written by Webster; Purdue physics doctoral student Dongwoo Khang; and three researchers from the Seoul National University in South Korea, physics doctoral students Minbaek Lee and Sun Namkung, and physics professor Seunghun Hong. Previous experiments in the Purdue lab have shown that about one-third more bone-forming cells, or osteoblasts, attach to carbon nanotubes that possess surface bumps about as wide as 100 nanometers, or billionths of a meter. Fewer bone cells stick to conventional titanium, which has surface features on the scale of microns, or millionths of a meter.



The nanometer-scale bumps mimic surface features of proteins and natural tissues, prompting cells to stick better and promoting the growth of new cells, Webster said. The findings also suggest that using such nanometer-scale materials might cause less of a rejection response from the body. Rejection eventually weakens the attachment of implants and causes them to become loose and painful, requiring replacement surgery. Aligning the nanotubes to further mimic natural bone also might provide more strength, Webster said.

Researchers used two methods to align the tiny nanotube structures, which have diameters of about 60 nanometers. One nanometer is roughly the length of 10 hydrogen atoms strung together. A human hair is more than 1,000 times wider than the nanotubes used in the study. In one method, researchers mixed the nanotubes in a polymer, or plastic, and passed an electric current through the mixture. Because nanotubes have the same natural electrical charge, they react to electricity by orienting themselves in the same direction. Once the polymer solidifies, the nanotubes are fixed in the aligned position.

The research team also aligned the nanotubes using another method in which the nanotubes are poured into grids of tiny channels. Because the channels are so narrow, the tubes can only fit lengthwise, causing them to become aligned. The grids can then be removed, leaving behind the aligned nanotubes.

The researchers then added the aligned nanotubes to a suspension of dyed bone cells in a small container. After one hour, the nanotubes were washed and a microscope was used to count how many of the dyed osteoblasts adhered to the material. Out of 3,000 bone cells per square centimeter of surface area, about 80 percent specifically stuck to and aligned with the carbon nanotubes – or about twice as many as those that adhered to non-aligned nanotubes in previous work. "So, in a very short period of time, one hour, we’re already seeing a big improvement in how well the cells stick to the nanotubes," Webster said.

Future research may focus on combining the two methods for aligning nanotubes. Using the grid technique creates a greater number of aligned nanotubes on the surface, which helps to increase bone-cell adhesion and alignment, whereas using electricity could better stimulate the growth of new bone tissue.

The research has been funded by the National Science Foundation though the NSF Nanoscale Exploratory Research program.

Findings were presented in October during the Biomedical Engineering Society’s annual meeting and a conference by the Society for Biomaterials entitled Biomaterials in Regenerative Medicine: The Advent of Combination Products. Both meetings were in Philadelphia.
Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Thomas Webster, (765) 496-7516, twebster@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Thomas Webster | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>