Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers align nanotubes to improve artificial joints

24.11.2004


Researchers at Purdue University have shown that artificial joints might be improved by making the implants out of tiny carbon tubes and filaments that are all aligned in the same direction, mimicking the alignment of collagen fibers and natural ceramic crystals in real bones.

The researchers already have shown in a series of experiments that bone cells in Petri dishes attach better to materials that possess smaller surface bumps than are found on conventional materials used to make artificial joints. The smaller features also stimulate the growth of more new bone tissue, which is critical for the proper attachment of artificial joints once they are implanted. Now, the Purdue researchers have shown even more enhanced cell adhesion and growth when so-called "nanotubes" and nanofibers are aligned in the same direction. This orientation is similar to the way collagen and natural ceramic crystals, called hydroxyapatite, are aligned in bone, said Thomas Webster, an assistant professor of biomedical engineering at Purdue.

Findings were presented at two recent scientific conferences in research papers written by Webster; Purdue physics doctoral student Dongwoo Khang; and three researchers from the Seoul National University in South Korea, physics doctoral students Minbaek Lee and Sun Namkung, and physics professor Seunghun Hong. Previous experiments in the Purdue lab have shown that about one-third more bone-forming cells, or osteoblasts, attach to carbon nanotubes that possess surface bumps about as wide as 100 nanometers, or billionths of a meter. Fewer bone cells stick to conventional titanium, which has surface features on the scale of microns, or millionths of a meter.



The nanometer-scale bumps mimic surface features of proteins and natural tissues, prompting cells to stick better and promoting the growth of new cells, Webster said. The findings also suggest that using such nanometer-scale materials might cause less of a rejection response from the body. Rejection eventually weakens the attachment of implants and causes them to become loose and painful, requiring replacement surgery. Aligning the nanotubes to further mimic natural bone also might provide more strength, Webster said.

Researchers used two methods to align the tiny nanotube structures, which have diameters of about 60 nanometers. One nanometer is roughly the length of 10 hydrogen atoms strung together. A human hair is more than 1,000 times wider than the nanotubes used in the study. In one method, researchers mixed the nanotubes in a polymer, or plastic, and passed an electric current through the mixture. Because nanotubes have the same natural electrical charge, they react to electricity by orienting themselves in the same direction. Once the polymer solidifies, the nanotubes are fixed in the aligned position.

The research team also aligned the nanotubes using another method in which the nanotubes are poured into grids of tiny channels. Because the channels are so narrow, the tubes can only fit lengthwise, causing them to become aligned. The grids can then be removed, leaving behind the aligned nanotubes.

The researchers then added the aligned nanotubes to a suspension of dyed bone cells in a small container. After one hour, the nanotubes were washed and a microscope was used to count how many of the dyed osteoblasts adhered to the material. Out of 3,000 bone cells per square centimeter of surface area, about 80 percent specifically stuck to and aligned with the carbon nanotubes – or about twice as many as those that adhered to non-aligned nanotubes in previous work. "So, in a very short period of time, one hour, we’re already seeing a big improvement in how well the cells stick to the nanotubes," Webster said.

Future research may focus on combining the two methods for aligning nanotubes. Using the grid technique creates a greater number of aligned nanotubes on the surface, which helps to increase bone-cell adhesion and alignment, whereas using electricity could better stimulate the growth of new bone tissue.

The research has been funded by the National Science Foundation though the NSF Nanoscale Exploratory Research program.

Findings were presented in October during the Biomedical Engineering Society’s annual meeting and a conference by the Society for Biomaterials entitled Biomaterials in Regenerative Medicine: The Advent of Combination Products. Both meetings were in Philadelphia.
Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Thomas Webster, (765) 496-7516, twebster@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Thomas Webster | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>