Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hold the stuffing: Low-glycemic diet may help keep weight off


Dieters have higher metabolism, feel less hungry

Preliminary data from Children’s Hospital Boston and Brigham and Women’s Hospital, published in the November 24 JAMA, suggest that weight-loss diets may be more effective when dieters seek to reduce glycemic load – the amount their blood glucose rises after a meal – rather than limit fat intake. The findings indicate that a low-glycemic diet may overcome the body’s natural tendency to slow metabolism and turn on hunger cues to "make up" the missing calories.

The low-glycemic-load (low-GL) diet reduces carbohydrates that are rapidly digested and that raise blood sugar and insulin to high levels -- such as white bread, refined breakfast cereals, and concentrated sugars. Instead, it emphasizes carbohydrates that release sugar more slowly, including whole grains, most fruits, vegetables, nuts, and legumes. "Our data suggest that the type of calories consumed – independent of the amount – can alter metabolic rate," says Dr. David Ludwig, director of the Optimal Weight for Life (OWL) obesity program at Children’s Hospital Boston and the study’s senior investigator. "That hasn’t been shown before. The idea that ’a calorie is a calorie is a calorie’ doesn’t really explain why conventional weight-loss diets usually don’t work for more than a few months."

Ludwig and colleagues randomized 46 overweight or obese adults aged 18 to 40 to consume one of two diets: a standard low-fat diet or a low-GL diet. Both diets provided approximately 1500 calories/day and were designed to produce a 10% weight loss in 6 to 10 weeks. However, the low-GL diet was higher in fat and made various carbohydrate substitutions, such as steel-cut oats instead of instant oatmeal, blueberries instead of raisins, and cracked-wheat bread instead of tortilla chips.

The 39 subjects who remained in the study succeeded in losing about 10% of their initial body weight. The low-GL dieters had smaller decreases in resting energy expenditure (averaging 96 kcal/day, or 5.9%) than the low-fat dieters (averaging 176 kcal/day, or 10.6%), meaning their metabolism did not slow as much. They also reported less hunger each day while on their diets.

"Almost anyone can lose weight in the short term – very few keep it off in the long term," says Ludwig. "That’s given rise to the notion that the body has a ’setpoint’ – and that when you diet, internal mechanisms work to restore your weight to that setpoint. A low-GL diet may work better with these internal biological responses to create the greatest likelihood of long-term weight loss."

Confirming other research, Ludwig’s team also found that the low-GL group had significantly greater improvements in insulin resistance (a risk factor for diabetes) and serum triglyceride and C-reactive protein levels (risk factors for cardiovascular disease). They now have a long-term study, in a larger group of subjects, to see if people on the low-GL diet can indeed keep off the lost pounds.

Dr. Mark Pereira of the Children’s Hospital Boston Department of Medicine (now at the University of Minnesota) was first author on the study.

Children’s Hospital Boston is recruiting adults for a large-scale, 18-month study of the low-GL diet. Subjects will receive comprehensive dietary and behavioral counseling in individual and group sessions that will enable them to put low-GL diets into effect. Subjects must be overweight, 18 to 35 years old, and motivated to attend weekly sessions for four months. People interested in enrolling should contact Erica Garcia-Lago at 617-355-2500.

Bess Andrews | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>