Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may lead to new means of increasing effectiveness of existing cancer treatments

23.11.2004


Mount Sinai researchers identify a new mechanism that contributes to the development of some breast and ovarian cancers



Researchers at Mount Sinai School of Medicine have discovered a new mechanism of activation of a pathway known to be implicated in many cancers. Additionally, the researchers found that when this mechanism is blocked cells may become more sensitive to radiation and chemotherapeutic agents, thus making them easier to destroy. The research was published in the November issue of Cancer Cell.

The researchers investigated the Wnt pathway, which is known to be integral to regulation of cell differentiation – the process by which a stem cell develops into a specific type of cell. Once differentiated, cell proliferation is limited. When activated the Wnt pathway tells cells not to differentiate allowing them to grow unchecked, which can lead to development of a cancer.


Drs. Anna Bafico, Stuart Aaronson and colleagues at Mount Sinai School of Medicine discovered that in some breast, ovarian and colon cancer cells this pathway becomes active through triggering of a receptor on the surface of the cell. So, the cell can stimulate itself, remain in an undifferentiated state and continue to proliferate. Furthermore, they discovered that the pathway can be shut off at the cell surface by compounds that block the receptor. Once turned off, such cancer cells become more sensitive to agents that induce cell death.

While it was previously known that the Wnt pathway is involved in almost all cases of colon cancer and in some ovarian, and skin cancers, this study was the first to implicate this pathway in breast cancer and to identify this mechanism in human tumor cells. "An increasing number of cancer therapeutic agents are being developed to block pathways activated by interactions at the cell surface," said Dr. Aaronson, Professor and Chairman of Oncological Sciences at Mount Sinai School of Medicine. "This research provides a novel target to interfere with a pathway that is implicated in many cancer types."

"Selectively interfering in this pathway in cancer cells with this mechanism may make them more sensitive to existing treatments," said Dr. Bafico, Assistant Professor of Oncological Sciences at Mount Sinai School of Medicine.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>