Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSB researchers advance understanding of urinary tract infections


Anyone who has ever had a urinary tract infection knows that they can be difficult to fight.

The bacterium E. coli is responsible for about 80 percent of human urinary tract infections. Scientists at the University of California, Santa Barbara have made important strides in understanding E. coli at the molecular level in an effort to discover the mechanisms by which E. coli cause urinary tract infections. The findings, the result of two years of study, are published in the November 19 issue of the journal Molecular Cell.

In this study, the scientists –– all associated with the Department of Molecular, Cellular and Developmental Biology –– focused on the mechanisms by which these bacteria, which normally live in the bowel, adhere to and colonize the urinary tract.

The scientists, Aaron D. Hernday, Bruce A. Braaten, Gina Broitman-Maduro, Patrick Engelberts, and David A. Low, studied how the expression of "pili" on the surface of the E. coli cells is controlled by environmental conditions. "Pili" are hair-like cell surface structures that play an important role in the adherence of the cells. If the cells cannot adhere and colonize, then they wash out of the urinary tract.

Certain stressful conditions can influence the genetic "switch" that causes the bacteria to be covered in pili. According to the findings this switch is either on or off. The study shows a mechanism by which a sensor called Cpx detects stressful environmental conditions and sends a signal to turn the switch off. This response may be important in allowing bacterial survival under stressful conditions.

Gail Gallessich | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>