Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good news about vitamin E

19.11.2004


Vitamin E may help some diabetics



Despite recent reports that show use of high-dose vitamin E supplements is associated with a higher overall risk of dying, at least one group stands to benefit greatly from the same vitamin. About 40 percent of diabetic patients can reduce their risk of heart attacks and of dying from heart disease by taking vitamin E supplements, according to a Technion-Israel Institute of Technology study published in the November 2004 Diabetes Care.

The research team, led by Dr. Andrew Levy of the Faculty of Medicine, had earlier demonstrated that diabetics with a particular form of a blood protein called haptoglobin had as much as a 500% increased risk of developing heart disease. The new study shows that when these at-risk patients, who have the 2-2 form of haptoglobin, took 400 international units of vitamin E daily, they reduced their risk of heart attack by 43 percent, and their risk of dying of heart disease by 55 percent.


About 40% of diabetics have the 2-2 form of haptoglobin; the rest have the 1 -1 or 2-1 forms. When they took the same vitamin E supplements, they did not show any significant reduction of cardiovascular risk resulting from vitamin E therapy.

Dr. Levy’s study analyzed serum samples that had been stored from the Heart Outcomes Prevention Evaluation (HOPE) trial of 2000, designed to study the effect of antioxidant therapy such as vitamin E on cardiovascular risk. The results of that study showed no benefit from vitamin E therapy on cardiovascular risk. However, Dr. Levy notes, the study did not segregate patients according to their haptoglobin type, analyzing instead the benefits of vitamin E in all patients. When he studied the serum samples from the HOPE study according to haptoglobin type, he found the greatly reduced risks noted above.

Now, a large-scale, five-year study of some 2,000 diabetics with haptoglobin 2-2, being conducted in northern Israel, is expected to corroborate Dr. Levy’s findings.

"If this larger study confirms our findings, the public health implications will be huge. Vitamin E would represent an inexpensive and safe way to reduce the risk of cardiovascular death and heart attack in a significant proportion of diabetic patients," he said.

Dr. Levy had demonstrated in multiple previous studies that haptoglobin 2-2 is predictive of heart disease -- but only in people with diabetes. That’s because diabetics tend to have more free radicals that destroy antioxidants. Furthermore, haptoglobin 2-2 is a very poor antioxidant when compared to the other haptoglobin types. This combination means that diabetics with haptoglobin 2-2 have an even greater deficiency of antioxidants than do diabetics with the other haptoglobin variants. Therefore, an increased supply of antioxidants, such as those found in vitamin E, would be expected to provide the greatest benefit for these patients.

The Technion-Israel Institute of Technology and the Kennedy-Leigh Charitable Trust is funding the new study. Dr. Levy is partial owner of a patent for a blood test that predicts susceptibility to diabetic vascular disease based on haptoglobin type.

Kevin Hattori | EurekAlert!
Further information:
http://www.ats.org

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>