Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Chronic Sinusitis Is Not Created Equal

18.11.2004


Not all congestion-producing, ear-popping, runny-nosed, headachy chronic rhinosinusitis infections are the same, researchers have found.



Rather, this problem that afflicts some 30 million Americans annually has four severity classifications that could help guide treatment today and help find better treatments in the future, says the lead author on the study published in the November issue of The Laryngoscope. “The way we have been reporting on chronic sinusitis is we lump it all together so we are comparing apples to oranges,” says Dr. Stilianos E. Kountakis, otolaryngologist and vice chair of the Medical College of Georgia Department of Otolaryngology-Head and Neck Surgery. “We treat one patient one way and get this outcome, and we treat a similar patient the same way and get another outcome. Using clinical parameters alone does not really predict well what is going to happen to the patient.”

Researchers decided to factor in some basic science as they took a retrospective look at 55 patients who had surgery for their disease at the University of Virginia at Charlottesville, where Dr. Kountakis was previously on faculty. The studies included clinical parameters, such as preoperative computerized tomography scans and endoscopic exams as well as patient reports of their symptoms based on the Sino-Nasal Outcome Test, or SNOT.


But researchers also looked at the expression of a gene known to contribute to sino-nasal inflammation as well as other indicators of inflammation, including aspirin sensitivity and allergies. Typically, pathology studies completed after surgery indicate whether the patient had polyps, growths that can obstruct sinus passages that are believed to result from the body trying to repair an injured sinus lining. These studies also looked at levels of eosinophils, little exterminator-like cells found in the nose that contain bubbles with toxins that can kill fungi and parasites as they enter. Despite their noble task, when too many of these cells are activated, eosinophils contribute to inflammation and help support polyps.

Not surprisingly, researchers found that patients with both polyps and high levels of eosinophils had the worst disease. The other three categories include patients with polyps without eosinophils, patients without polyps who had eosinophils and patients with neither. “Our analysis showed that disease severity correlated with the presence or absence of polyps (clinical objective parameter) and the presence or absence of sinus tissue eosinophilia (histologic marker),” the researchers write. “All other parameters did not incrementally contribute to this correlation with disease severity.”

Dr. Kountakis already has worked with Dr. Richard B. Hessler, chief of the MCG Section of Anatomic Pathology, to include eosinophil levels on pathology reports for sinusitis patients at MCG Medical Center, a step that could also be taken by other hospitals.

The ability to better categorize this common condition is a good first step in more targeted treatment; for example, patients with higher levels of eosinophils may benefit from more anti-inflammatory agents over longer periods, Dr. Kountakis says.

To simplify categorization, the researchers already are working on a “fingerprint of inflammation” that could be obtained from a simple blood test. “Then, as we design studies to look for still better treatments, we can use this information to compare apples to apples,” says Dr. Kountakis.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>